Statistical Convergence in Function Spaces

We study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustivenes...

Full description

Saved in:
Bibliographic Details
Main Authors: Agata Caserta, Giuseppe Di Maio, Ljubiša D. R. Kočinac
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/420419
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561725086367744
author Agata Caserta
Giuseppe Di Maio
Ljubiša D. R. Kočinac
author_facet Agata Caserta
Giuseppe Di Maio
Ljubiša D. R. Kočinac
author_sort Agata Caserta
collection DOAJ
description We study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustiveness.
format Article
id doaj-art-a1ccc6a5ddb34132b4ed0739da489778
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-a1ccc6a5ddb34132b4ed0739da4897782025-02-03T01:24:22ZengWileyAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/420419420419Statistical Convergence in Function SpacesAgata Caserta0Giuseppe Di Maio1Ljubiša D. R. Kočinac2Department of Mathematics, SUN, 81100 Caserta, ItalyDepartment of Mathematics, SUN, 81100 Caserta, ItalyFaculty of Sciences and Mathematics, University of Niš, 18000 Niš, SerbiaWe study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustiveness.http://dx.doi.org/10.1155/2011/420419
spellingShingle Agata Caserta
Giuseppe Di Maio
Ljubiša D. R. Kočinac
Statistical Convergence in Function Spaces
Abstract and Applied Analysis
title Statistical Convergence in Function Spaces
title_full Statistical Convergence in Function Spaces
title_fullStr Statistical Convergence in Function Spaces
title_full_unstemmed Statistical Convergence in Function Spaces
title_short Statistical Convergence in Function Spaces
title_sort statistical convergence in function spaces
url http://dx.doi.org/10.1155/2011/420419
work_keys_str_mv AT agatacaserta statisticalconvergenceinfunctionspaces
AT giuseppedimaio statisticalconvergenceinfunctionspaces
AT ljubisadrkocinac statisticalconvergenceinfunctionspaces