Statistical Convergence in Function Spaces
We study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustivenes...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2011/420419 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561725086367744 |
---|---|
author | Agata Caserta Giuseppe Di Maio Ljubiša D. R. Kočinac |
author_facet | Agata Caserta Giuseppe Di Maio Ljubiša D. R. Kočinac |
author_sort | Agata Caserta |
collection | DOAJ |
description | We study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustiveness. |
format | Article |
id | doaj-art-a1ccc6a5ddb34132b4ed0739da489778 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2011-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-a1ccc6a5ddb34132b4ed0739da4897782025-02-03T01:24:22ZengWileyAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/420419420419Statistical Convergence in Function SpacesAgata Caserta0Giuseppe Di Maio1Ljubiša D. R. Kočinac2Department of Mathematics, SUN, 81100 Caserta, ItalyDepartment of Mathematics, SUN, 81100 Caserta, ItalyFaculty of Sciences and Mathematics, University of Niš, 18000 Niš, SerbiaWe study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustiveness.http://dx.doi.org/10.1155/2011/420419 |
spellingShingle | Agata Caserta Giuseppe Di Maio Ljubiša D. R. Kočinac Statistical Convergence in Function Spaces Abstract and Applied Analysis |
title | Statistical Convergence in Function Spaces |
title_full | Statistical Convergence in Function Spaces |
title_fullStr | Statistical Convergence in Function Spaces |
title_full_unstemmed | Statistical Convergence in Function Spaces |
title_short | Statistical Convergence in Function Spaces |
title_sort | statistical convergence in function spaces |
url | http://dx.doi.org/10.1155/2011/420419 |
work_keys_str_mv | AT agatacaserta statisticalconvergenceinfunctionspaces AT giuseppedimaio statisticalconvergenceinfunctionspaces AT ljubisadrkocinac statisticalconvergenceinfunctionspaces |