Szász–Beta Operators Linking Frobenius–Euler–Simsek-Type Polynomials

This manuscript associates with a study of Frobenius–Euler–Simsek-type Polynomials. In this research work, we construct a new sequence of Szász–Beta type operators via Frobenius–Euler–Simsek-type Polynomials to discuss approximation properties for the Lebesgue integrable functions, i.e., <inline-...

Full description

Saved in:
Bibliographic Details
Main Authors: Nadeem Rao, Mohammad Farid, Shivani Bansal
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/6/418
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This manuscript associates with a study of Frobenius–Euler–Simsek-type Polynomials. In this research work, we construct a new sequence of Szász–Beta type operators via Frobenius–Euler–Simsek-type Polynomials to discuss approximation properties for the Lebesgue integrable functions, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. Furthermore, estimates in view of test functions and central moments are studied. Next, rate of convergence is discussed with the aid of the Korovkin theorem and the Voronovskaja type theorem. Moreover, direct approximation results in terms of modulus of continuity of first- and second-order, Peetre’s K-functional, Lipschitz type space, and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mrow><mi>t</mi><mi>h</mi></mrow></msup></semantics></math></inline-formula>-order Lipschitz type maximal functions are investigated. In the subsequent section, we present weighted approximation results, and statistical approximation theorems are discussed. To demonstrate the effectiveness and applicability of the proposed operators, we present several illustrative examples and visualize the results graphically.
ISSN:2075-1680