Connectedness of Solution Sets for Weak Vector Variational Inequalities on Unbounded Closed Convex Sets
We study the connectedness of solution set for set-valued weak vector variational inequality in unbounded closed convex subsets of finite dimensional spaces, when the mapping involved is scalar C-pseudomonotone. Moreover, the path connectedness of solution set for set-valued weak vector variational...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2013/431717 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We study the connectedness of solution set for set-valued weak vector variational inequality in unbounded closed convex subsets of finite dimensional spaces, when the mapping involved is scalar C-pseudomonotone. Moreover, the path connectedness of solution set for set-valued weak vector variational inequality is established, when the mapping involved is strictly scalar C-pseudomonotone. The results presented in this paper generalize some known results by Cheng (2001), Lee et al. (1998), and Lee and Bu (2005). |
|---|---|
| ISSN: | 1085-3375 1687-0409 |