Threshold dynamics of a periodic SIR model with delay in an infected compartment

Threshold dynamics of epidemic models in periodic environmentsattract more attention. But there are few papers which are concernedwith the case where the infected compartments satisfy a delaydifferential equation. For this reason, we investigate the dynamicalbehavior of a periodic SIR model with del...

Full description

Saved in:
Bibliographic Details
Main Author: Zhenguo Bai
Format: Article
Language:English
Published: AIMS Press 2014-12-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2015.12.555
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Threshold dynamics of epidemic models in periodic environmentsattract more attention. But there are few papers which are concernedwith the case where the infected compartments satisfy a delaydifferential equation. For this reason, we investigate the dynamicalbehavior of a periodic SIR model with delay in an infectedcompartment. We first introduce the basic reproduction number$\mathcal {R}_0$ for the model, and then show that it can act as athreshold parameter that determines the uniform persistence orextinction of the disease. Numerical simulations are performed toconfirm the analytical results and illustrate the dependence of$\mathcal {R}_0$ on the seasonality and the latent period.
ISSN:1551-0018