A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random Variables

We investigate the tailed asymptotic behavior of the randomly weighted sums with increments with convolution-equivalent distributions. Our obtained result can be directly applied to a discrete-time insurance risk model with insurance and financial risks and derive the asymptotics for the finite-time...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang Yang, Jun-feng Liu, Yu-lin Zhang
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/273217
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562966806921216
author Yang Yang
Jun-feng Liu
Yu-lin Zhang
author_facet Yang Yang
Jun-feng Liu
Yu-lin Zhang
author_sort Yang Yang
collection DOAJ
description We investigate the tailed asymptotic behavior of the randomly weighted sums with increments with convolution-equivalent distributions. Our obtained result can be directly applied to a discrete-time insurance risk model with insurance and financial risks and derive the asymptotics for the finite-time probability of the above risk model.
format Article
id doaj-art-a0c12a11a2014b8e9a378d0ad89fb64d
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-a0c12a11a2014b8e9a378d0ad89fb64d2025-02-03T01:21:21ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/273217273217A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random VariablesYang Yang0Jun-feng Liu1Yu-lin Zhang2School of Mathematics and Statistics, Nanjing Audit University, Nanjing 210029, ChinaSchool of Mathematics and Statistics, Nanjing Audit University, Nanjing 210029, ChinaSchool of Economics and Management, Southeast University, Nanjing 210096, ChinaWe investigate the tailed asymptotic behavior of the randomly weighted sums with increments with convolution-equivalent distributions. Our obtained result can be directly applied to a discrete-time insurance risk model with insurance and financial risks and derive the asymptotics for the finite-time probability of the above risk model.http://dx.doi.org/10.1155/2013/273217
spellingShingle Yang Yang
Jun-feng Liu
Yu-lin Zhang
A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random Variables
Abstract and Applied Analysis
title A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random Variables
title_full A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random Variables
title_fullStr A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random Variables
title_full_unstemmed A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random Variables
title_short A Note on the Tail Behavior of Randomly Weighted Sums with Convolution-Equivalently Distributed Random Variables
title_sort note on the tail behavior of randomly weighted sums with convolution equivalently distributed random variables
url http://dx.doi.org/10.1155/2013/273217
work_keys_str_mv AT yangyang anoteonthetailbehaviorofrandomlyweightedsumswithconvolutionequivalentlydistributedrandomvariables
AT junfengliu anoteonthetailbehaviorofrandomlyweightedsumswithconvolutionequivalentlydistributedrandomvariables
AT yulinzhang anoteonthetailbehaviorofrandomlyweightedsumswithconvolutionequivalentlydistributedrandomvariables
AT yangyang noteonthetailbehaviorofrandomlyweightedsumswithconvolutionequivalentlydistributedrandomvariables
AT junfengliu noteonthetailbehaviorofrandomlyweightedsumswithconvolutionequivalentlydistributedrandomvariables
AT yulinzhang noteonthetailbehaviorofrandomlyweightedsumswithconvolutionequivalentlydistributedrandomvariables