Design and Application of Uniaxially Sensitive Stress Sensor
Current stress sensors for microsystems face integration challenges and complex signal decoding. This paper proposes a real-time uniaxially sensitive stress sensor. It is obtained by simple combinations of bar resistors using their sensitivity differences in different axes. With the aid of a Wheatst...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/16/1/94 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Current stress sensors for microsystems face integration challenges and complex signal decoding. This paper proposes a real-time uniaxially sensitive stress sensor. It is obtained by simple combinations of bar resistors using their sensitivity differences in different axes. With the aid of a Wheatstone bridge, the sensor can measure the uniaxial stress magnitude by simple calibration of the stress against the output voltage and detect the bidirectional stress magnitude and direction in a micro-zone by simple rotation. The theoretical sensitivity obtained from simulation is 0.087 mV/V·MPa when the X-bridge is stressed in the X-direction under 1 V of excitation, and the test sensitivity of the X-bridge prepared in this paper is 0.1 mV/V·MPa. The design is structurally and procedurally simple, exhibits better temperature stability, and reduces interface requirements, making it suitable for the health monitoring of multi-chip microsystem chips. |
---|---|
ISSN: | 2072-666X |