Deconvolution Filtering for Nonlinear Stochastic Systems with Randomly Occurring Sensor Delays via Probability-Dependent Method
This paper deals with a robust H∞ deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable sequence following the Bernoulli distribution with...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/814187 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with a robust H∞ deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable sequence following the Bernoulli distribution with time-varying probability. The purpose is to design an H∞ deconvolution filter such that, for all the admissible randomly occurring sensor delays, nonlinear disturbances, and external noises, the input signal distorted by the transmission channel could be recovered to a specified extent. By utilizing the constructed Lyapunov functional relying on the time-varying probability parameters, the desired sufficient criteria are derived. The proposed H∞ deconvolution filter parameters include not only the fixed gains obtained by solving a convex optimization problem but also the online measurable time-varying probability. When the time-varying sensor delays occur randomly with a time-varying probability sequence, the proposed gain-scheduled filtering algorithm is very effective. The obtained design algorithm is finally verified in the light of simulation examples. |
---|---|
ISSN: | 1085-3375 1687-0409 |