The Strong Local Diagnosability of a Hypercube Network with Missing Edges
In the research on the reliability of a connection network, diagnosability is an important problem that should be considered. In this article, a new concept regarding diagnosability, called strong local diagnosability (SLD), which describes the local status of the strong diagnosability (SD) of a sys...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2018/5745628 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the research on the reliability of a connection network, diagnosability is an important problem that should be considered. In this article, a new concept regarding diagnosability, called strong local diagnosability (SLD), which describes the local status of the strong diagnosability (SD) of a system, is presented. In addition, a few important results related to the SLD of a node of a system are presented. Based on these results, we conclude that in a hypercube network of n dimensions, denoted by Qn, the SLD of a node is equal to its degree when n⩾4. Moreover, we explore the SLD of a node of an incomplete hypercube network. We determine that the SLD of a node is equal to its remaining degree (RD) in an incomplete hypercube network, which is true provided that the number of faulty edges in this hypercube network does not exceed n−3. Finally, we discuss the SLD of a node for an incomplete hypercube network and obtain the following results: if the minimum RD of nodes in an incomplete hypercube network of n-dimensions is greater than 3, then the SLD of any node is still equal to its RD provided that the number of faulty edges does not exceed 7n−3−1. If the RD of each node is greater than 4, then the SLD of each node is also equal to its RD, no matter how many faulty edges exist in Qn. |
---|---|
ISSN: | 1076-2787 1099-0526 |