Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers

Abstract Background Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) marker...

Full description

Saved in:
Bibliographic Details
Main Authors: Lothar Häberle, Ramona Erber, Paul Gass, Alexander Hein, Melitta Niklos, Bernhard Volz, Carolin C. Hack, Rüdiger Schulz-Wendtland, Hanna Huebner, Chloë Goossens, Matthias Christgen, Thilo Dörk, Tjoung-Won Park-Simon, Andreas Schneeweiss, Michael Untch, Valentina Nekljudova, Sibylle Loibl, Arndt Hartmann, Matthias W. Beckmann, Peter A. Fasching
Format: Article
Language:English
Published: BMC 2025-01-01
Series:Breast Cancer Research
Subjects:
Online Access:https://doi.org/10.1186/s13058-025-01960-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585303913660416
author Lothar Häberle
Ramona Erber
Paul Gass
Alexander Hein
Melitta Niklos
Bernhard Volz
Carolin C. Hack
Rüdiger Schulz-Wendtland
Hanna Huebner
Chloë Goossens
Matthias Christgen
Thilo Dörk
Tjoung-Won Park-Simon
Andreas Schneeweiss
Michael Untch
Valentina Nekljudova
Sibylle Loibl
Arndt Hartmann
Matthias W. Beckmann
Peter A. Fasching
author_facet Lothar Häberle
Ramona Erber
Paul Gass
Alexander Hein
Melitta Niklos
Bernhard Volz
Carolin C. Hack
Rüdiger Schulz-Wendtland
Hanna Huebner
Chloë Goossens
Matthias Christgen
Thilo Dörk
Tjoung-Won Park-Simon
Andreas Schneeweiss
Michael Untch
Valentina Nekljudova
Sibylle Loibl
Arndt Hartmann
Matthias W. Beckmann
Peter A. Fasching
author_sort Lothar Häberle
collection DOAJ
description Abstract Background Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy. Methods Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob). The most precise model identified using cross-validation was implemented in an online calculator and a nomogram. Associations among pCR-prob, prognostic IHC3 distant recurrence and disease-free survival were studied using Cox regression and Kaplan–Meier analyses. The model’s utility was further evaluated in independent external validation cohorts. Results 273 patients (23.4%) achieved a pCR. The most precise model had across-validated area under the curve (AUC) of 0.84, sensitivity of 0.82, and specificity of 0.71. External validation yielded AUCs between 0.75 (95% CI, 0.70–0.81) and 0.83 (95% CI, 0.78–0.87). The higher the pCR-prob, the greater the prognostic impact of pCR status (presence/absence): hazard ratios decreased from 0.55 (95% central range, 0.07–1.77) at 0% to 0.20 (0.11–0.31) at 50% pCR-prob. Combining pCR-prob and IHC3 score further improved the precision of disease-free survival prognosis. Conclusions A pCR prediction model for neoadjuvant therapy decision-making was established. Combining pCR and recurrence prediction allows identification of not only patients who benefit most from neoadjuvant chemotherapy, but also patients with a very unfavorable prognosis for whom alternative treatment strategies should be considered.
format Article
id doaj-art-9fd0277ce8484dd4a5efb35306fd83e0
institution Kabale University
issn 1465-542X
language English
publishDate 2025-01-01
publisher BMC
record_format Article
series Breast Cancer Research
spelling doaj-art-9fd0277ce8484dd4a5efb35306fd83e02025-01-26T12:58:49ZengBMCBreast Cancer Research1465-542X2025-01-0127111310.1186/s13058-025-01960-8Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markersLothar Häberle0Ramona Erber1Paul Gass2Alexander Hein3Melitta Niklos4Bernhard Volz5Carolin C. Hack6Rüdiger Schulz-Wendtland7Hanna Huebner8Chloë Goossens9Matthias Christgen10Thilo Dörk11Tjoung-Won Park-Simon12Andreas Schneeweiss13Michael Untch14Valentina Nekljudova15Sibylle Loibl16Arndt Hartmann17Matthias W. Beckmann18Peter A. Fasching19Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergInstitute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergInstitute of Diagnostic Radiology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergInstitute of Pathology, Hannover Medical SchoolGynecology Research Unit, Hannover Medical SchoolDepartment of Gynecology and Obstetrics, Hannover Medical SchoolNational Center for Tumor Diseases, University Hospital and German Cancer Research CenterDepartment of Gynecology and Obstetrics, Helios Clinic Berlin-BuchGerman Breast GroupGerman Breast GroupInstitute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergDepartment of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–NurembergAbstract Background Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy. Methods Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob). The most precise model identified using cross-validation was implemented in an online calculator and a nomogram. Associations among pCR-prob, prognostic IHC3 distant recurrence and disease-free survival were studied using Cox regression and Kaplan–Meier analyses. The model’s utility was further evaluated in independent external validation cohorts. Results 273 patients (23.4%) achieved a pCR. The most precise model had across-validated area under the curve (AUC) of 0.84, sensitivity of 0.82, and specificity of 0.71. External validation yielded AUCs between 0.75 (95% CI, 0.70–0.81) and 0.83 (95% CI, 0.78–0.87). The higher the pCR-prob, the greater the prognostic impact of pCR status (presence/absence): hazard ratios decreased from 0.55 (95% central range, 0.07–1.77) at 0% to 0.20 (0.11–0.31) at 50% pCR-prob. Combining pCR-prob and IHC3 score further improved the precision of disease-free survival prognosis. Conclusions A pCR prediction model for neoadjuvant therapy decision-making was established. Combining pCR and recurrence prediction allows identification of not only patients who benefit most from neoadjuvant chemotherapy, but also patients with a very unfavorable prognosis for whom alternative treatment strategies should be considered.https://doi.org/10.1186/s13058-025-01960-8pCRPrediction modelBreast cancerNeoadjuvant chemotherapyImmunohistochemistryClinical data
spellingShingle Lothar Häberle
Ramona Erber
Paul Gass
Alexander Hein
Melitta Niklos
Bernhard Volz
Carolin C. Hack
Rüdiger Schulz-Wendtland
Hanna Huebner
Chloë Goossens
Matthias Christgen
Thilo Dörk
Tjoung-Won Park-Simon
Andreas Schneeweiss
Michael Untch
Valentina Nekljudova
Sibylle Loibl
Arndt Hartmann
Matthias W. Beckmann
Peter A. Fasching
Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers
Breast Cancer Research
pCR
Prediction model
Breast cancer
Neoadjuvant chemotherapy
Immunohistochemistry
Clinical data
title Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers
title_full Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers
title_fullStr Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers
title_full_unstemmed Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers
title_short Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers
title_sort prediction of pathological complete response after neoadjuvant chemotherapy for her2 negative breast cancer patients with routine immunohistochemical markers
topic pCR
Prediction model
Breast cancer
Neoadjuvant chemotherapy
Immunohistochemistry
Clinical data
url https://doi.org/10.1186/s13058-025-01960-8
work_keys_str_mv AT lotharhaberle predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT ramonaerber predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT paulgass predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT alexanderhein predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT melittaniklos predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT bernhardvolz predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT carolinchack predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT rudigerschulzwendtland predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT hannahuebner predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT chloegoossens predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT matthiaschristgen predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT thilodork predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT tjoungwonparksimon predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT andreasschneeweiss predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT michaeluntch predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT valentinanekljudova predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT sibylleloibl predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT arndthartmann predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT matthiaswbeckmann predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers
AT peterafasching predictionofpathologicalcompleteresponseafterneoadjuvantchemotherapyforher2negativebreastcancerpatientswithroutineimmunohistochemicalmarkers