SPARQ: Efficient Entanglement Distribution and Routing in Space–Air–Ground Quantum Networks

In this article, a space–air–ground quantum (SPARQ) network is developed as a means for providing a seamless on-demand entanglement distribution. The node mobility in SPARQ poses significant challenges to entanglement routing. Existing quantum routing algorithms focus on statio...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed Shaban, Muhammad Ismail, Walid Saad
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Transactions on Quantum Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10684482/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, a space–air–ground quantum (SPARQ) network is developed as a means for providing a seamless on-demand entanglement distribution. The node mobility in SPARQ poses significant challenges to entanglement routing. Existing quantum routing algorithms focus on stationary ground nodes and utilize link distance as an optimality metric, which is unrealistic for dynamic systems, like SPARQ. Moreover, in contrast to the prior art that assumes homogeneous nodes, SPARQ encompasses heterogeneous nodes with different functionalities further complicates the entanglement distribution. To solve the entanglement routing problem, a deep reinforcement learning (RL) framework is proposed and trained using deep Q-network (DQN) on multiple graphs of SPARQ to account for the network dynamics. Subsequently, an entanglement distribution policy, third-party entanglement distribution (TPED), is proposed to establish entanglement between communication parties. A realistic quantum network simulator is designed for performance evaluation. Simulation results show that the TPED policy improves entanglement fidelity by 3% and reduces memory consumption by 50% compared with benchmark. The results also show that the proposed DQN algorithm improves the number of resolved teleportation requests by 39% compared with shortest path baseline and the entanglement fidelity by 2% compared with an RL algorithm that is based on long short-term memory. It also improved entanglement fidelity by 6% and 9% compared with state-of-the-art benchmarks. Moreover, the entanglement fidelity is improved by 15% compared with DQN trained on a snapshot of SPARQ. Additionally, SPARQ enhances the average entanglement fidelity by 23.5% compared with existing networks spanning only space and ground layers.
ISSN:2689-1808