Global existence of weak solutions to a class of higher-order nonlinear evolution equations

This paper deals with the initial boundary value problem for a class of n-dimensional higher-order nonlinear evolution equations that come from the viscoelastic mechanics and have no positive definite energy. Through the analysis of functionals containing higher-order energy of motion, a modified po...

Full description

Saved in:
Bibliographic Details
Main Authors: Li-ming Xiao, Cao Luo, Jie Liu
Format: Article
Language:English
Published: AIMS Press 2024-09-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2024248
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with the initial boundary value problem for a class of n-dimensional higher-order nonlinear evolution equations that come from the viscoelastic mechanics and have no positive definite energy. Through the analysis of functionals containing higher-order energy of motion, a modified potential well with positive depth is constructed. Then, using the potential well method, and Galerkin method, it has been shown that when the initial data starts from the stable set, there exists a global weak solution to such an evolution problem.
ISSN:2688-1594