Hybrid Josephson Rhombus: A Superconducting Element with Tailored Current-Phase Relation

Controlling the current-phase relation (CPR) of Josephson elements is essential for tailoring the eigenstates of superconducting qubits, tuning the properties of parametric amplifiers, and designing nonreciprocal superconducting devices. Here, we introduce the hybrid Josephson rhombus, a highly tuna...

Full description

Saved in:
Bibliographic Details
Main Authors: L. Banszerus, C. W. Andersson, W. Marshall, T. Lindemann, M. J. Manfra, C. M. Marcus, S. Vaitiekėnas
Format: Article
Language:English
Published: American Physical Society 2025-02-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.15.011021
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Controlling the current-phase relation (CPR) of Josephson elements is essential for tailoring the eigenstates of superconducting qubits, tuning the properties of parametric amplifiers, and designing nonreciprocal superconducting devices. Here, we introduce the hybrid Josephson rhombus, a highly tunable superconducting circuit containing four semiconductor-superconductor hybrid Josephson junctions embedded in a loop. Combining magnetic frustration with gate-voltage-controlled tuning of individual Josephson couplings provides deterministic control of the harmonic content of the rhombus CPR. We show that, for balanced Josephson couplings at full frustration, the hybrid rhombus displays a π-periodic cos(2φ) potential, indicating coherent charge-4e transport. Tuning away from the balanced configuration, we observe a superconducting diode effect with efficiency exceeding 25%. These results showcase the potential of hybrid Josephson rhombi as fundamental building blocks for noise-resilient qubits and quantum devices with custom transport properties.
ISSN:2160-3308