The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization

We propose and generalize a new nonlinear conjugate gradient method for unconstrained optimization. The global convergence is proved with the Wolfe line search. Numerical experiments are reported which support the theoretical analyses and show the presented methods outperforming CGDESCENT method.

Saved in:
Bibliographic Details
Main Authors: Yang Yueting, Cao Mingyuan
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/932980
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551691834097664
author Yang Yueting
Cao Mingyuan
author_facet Yang Yueting
Cao Mingyuan
author_sort Yang Yueting
collection DOAJ
description We propose and generalize a new nonlinear conjugate gradient method for unconstrained optimization. The global convergence is proved with the Wolfe line search. Numerical experiments are reported which support the theoretical analyses and show the presented methods outperforming CGDESCENT method.
format Article
id doaj-art-9f77ae59c02249b895011fbb8fae3ce0
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-9f77ae59c02249b895011fbb8fae3ce02025-02-03T06:00:47ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/932980932980The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained OptimizationYang Yueting0Cao Mingyuan1School of Mathematics, Beihua University, Jilin 132013, ChinaSchool of Mathematics, Beihua University, Jilin 132013, ChinaWe propose and generalize a new nonlinear conjugate gradient method for unconstrained optimization. The global convergence is proved with the Wolfe line search. Numerical experiments are reported which support the theoretical analyses and show the presented methods outperforming CGDESCENT method.http://dx.doi.org/10.1155/2012/932980
spellingShingle Yang Yueting
Cao Mingyuan
The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization
Journal of Applied Mathematics
title The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization
title_full The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization
title_fullStr The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization
title_full_unstemmed The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization
title_short The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization
title_sort global convergence of a new mixed conjugate gradient method for unconstrained optimization
url http://dx.doi.org/10.1155/2012/932980
work_keys_str_mv AT yangyueting theglobalconvergenceofanewmixedconjugategradientmethodforunconstrainedoptimization
AT caomingyuan theglobalconvergenceofanewmixedconjugategradientmethodforunconstrainedoptimization
AT yangyueting globalconvergenceofanewmixedconjugategradientmethodforunconstrainedoptimization
AT caomingyuan globalconvergenceofanewmixedconjugategradientmethodforunconstrainedoptimization