Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions
This paper investigates the teleparallel Robertson–Walker (TRW) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/3/374 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper investigates the teleparallel Robertson–Walker (TRW) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity solutions for a scalar field source. We use the TRW <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity field equations (FEs) for each <i>k</i>-parameter value case added by a scalar field to find new teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we find an easy-to-compute <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solution formula applicable for any scalar field source. Then, we obtain, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> situations, some new analytical <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions, only for specific <i>n</i>-parameter values and well-determined scalar field cases. We can find by those computations a large number of analytical teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions independent of any scalar potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> expression. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> independence makes the FE solving and computations easier. The new solutions will be relevant for future cosmological applications in dark matter, dark energy (DE) quintessence, phantom energy and quintom models of physical processes. |
|---|---|
| ISSN: | 2227-7390 |