Development and Validation of LAMP Assays for Distinguishing MPXV Clades with Fluorescent and Colorimetric Readouts

Human monkeypox (Mpox) is a zoonotic disease caused by the Monkeypox virus (MPXV). As of 14 August 2024, the World Health Organization (WHO) has declared it a global health emergency. For Mpox, this was the second public health emergency of global significance in the past two years. MPXV belongs to...

Full description

Saved in:
Bibliographic Details
Main Authors: Nazente Atceken, Sara Asghari Dilmani, Ahmed Choukri Abdullah, Mutlu Sarıkaya, Defne Yigci, Gozde Korkmaz, Savas Tasoglu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/15/1/23
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human monkeypox (Mpox) is a zoonotic disease caused by the Monkeypox virus (MPXV). As of 14 August 2024, the World Health Organization (WHO) has declared it a global health emergency. For Mpox, this was the second public health emergency of global significance in the past two years. MPXV belongs to the <i>Poxviridae</i> family and is phylogenetically and epidemically divided into two clades: the Congo Basin (Clade-I) and the West African (Clade-II) clades. Clade-I has been associated with more severe disease progression and higher mortality compared to Clade-II, and thus the differentiation between clades can play an important role in predicting disease prognosis. The LAMP technique has the advantages of not requiring thermal cycling and achieving higher amplification in a shorter time compared to qPCR. Different types of LAMP assays were developed in this study to benefit from these advantages. We report the development of LAMP-1 and LAMP-2 assays using the LAMP method to detect MPXV Clade-I and Clade-II, respectively. The LAMP-1 assay includes both fluorescence and visible colorimetric readout tests developed with sensitivities of 10<sup>3</sup> and 10<sup>7</sup> copies, respectively. For the LAMP-2 assay, a probe-based test utilizing the Novel R-Duplex DARQ probe was developed, offering fluorescence detection at a sensitivity of 10<sup>3</sup> copies. As a result, we successfully developed three highly specific molecular diagnostic tests that distinctly differentiate between MPXV clades, delivering essential tools for the precise diagnosis and effective control of Mpox.
ISSN:2079-6374