Model Calibration and Validation for the Fuzzy-EGARCH-ANN Model
This work shown as the fuzzy-EGARCH-ANN (fuzzy-exponential generalized autoregressive conditional heteroscedastic-artificial neural network) model does not require continuous model calibration if the corresponding DE algorithm is used appropriately, but other models such as GARCH, EGARCH, and EGARCH...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Applied Computational Intelligence and Soft Computing |
Online Access: | http://dx.doi.org/10.1155/2021/6637091 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work shown as the fuzzy-EGARCH-ANN (fuzzy-exponential generalized autoregressive conditional heteroscedastic-artificial neural network) model does not require continuous model calibration if the corresponding DE algorithm is used appropriately, but other models such as GARCH, EGARCH, and EGARCH-ANN need continuous model calibration and validation so they fit the data and reality very well up to the desired accuracy. Also, a robust analysis of volatility forecasting of the daily S&P 500 data collected from Yahoo Finance for the daily spanning period 1/3/2006 to 20/2/2020. To our knowledge, this is the first study that focuses on the daily S&P 500 data using high-frequency data and the fuzzy-EGARCH-ANN econometric model. Finally, the research finds that the best performing model in terms of one-step-ahead forecasts based on realized volatility computed from the underlying daily data series is the fuzzy-EGARCH-ANN (1,1,2,1) model with Student’s t-distribution. |
---|---|
ISSN: | 1687-9732 |