Behavior-driven forecasts of neighborhood-level COVID-19 spread in New York City.
The COVID-19 pandemic in New York City (NYC) was characterized by marked disparities in disease burdens across neighborhoods. Accurate neighborhood-level forecasts are critical for planning more equitable resource allocation to reduce health inequalities; however, such spatially high-resolution fore...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-04-01
|
| Series: | PLoS Computational Biology |
| Online Access: | https://doi.org/10.1371/journal.pcbi.1012979 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The COVID-19 pandemic in New York City (NYC) was characterized by marked disparities in disease burdens across neighborhoods. Accurate neighborhood-level forecasts are critical for planning more equitable resource allocation to reduce health inequalities; however, such spatially high-resolution forecasts remain scarce in operational use. In this study, we analyze aggregated foot traffic data derived from mobile devices to measure the connectivity among 42 NYC neighborhoods driven by various human activities such as dining, shopping, and entertainment. Using real-world time-varying contact patterns in different place categories, we develop a parsimonious behavior-driven epidemic model that incorporates population mixing, indoor crowdedness, dwell time, and seasonality of virus transmissibility. We fit this model to neighborhood-level COVID-19 case data in NYC and further couple this model with a data assimilation algorithm to generate short-term forecasts of neighborhood-level COVID-19 cases in 2020. We find differential contact patterns and connectivity between neighborhoods driven by different human activities. The behavior-driven model supports accurate modeling of neighborhood-level SARS-CoV-2 transmission throughout 2020. In the best-fitting model, we estimate that the force of infection (FOI) in indoor settings increases sublinearly with crowdedness and dwell time. Retrospective forecasting demonstrates that this behavior-driven model generates improved short-term forecasts in NYC neighborhoods compared to several baseline models. Our findings indicate that aggregated foot-traffic data for routine human activities can support neighborhood-level COVID-19 forecasts in NYC. This behavior-driven model may be adapted for use with other respiratory pathogens sharing similar transmission routes. |
|---|---|
| ISSN: | 1553-734X 1553-7358 |