A data driven machine learning approach for predicting and optimizing sulfur compound adsorption on metal organic frameworks
Abstract This study employed some machine learning (ML) techniques with Python programming to forecast the adsorption capacity of MOF adsorbents for thiophenic compounds namely benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Five ML models were developed w...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-025-86689-2 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|