Doubled haploid production in Brassica L.

Doubled haploids (DHs) production through androgenesis is a biotechnological method for genetic improvement of crops. Biotechnological DH line production offers advantages to plant breeders, including the possibility to obtain homozygous lines within a year in contrast to common inbreeding methods,...

Full description

Saved in:
Bibliographic Details
Main Authors: N. A. Shmykova, D. V. Shumilina, T. P. Suprunova
Format: Article
Language:English
Published: Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders 2015-07-01
Series:Вавиловский журнал генетики и селекции
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/353
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Doubled haploids (DHs) production through androgenesis is a biotechnological method for genetic improvement of crops. Biotechnological DH line production offers advantages to plant breeders, including the possibility to obtain homozygous lines within a year in contrast to common inbreeding methods, which may take 6–12 years. The greatest success in androgenesis has been achieved in some varieties of rapeseed (Brassica napus L.). However, the efficiency of androgenesis in other Brassica species is still poor. Induction of microspore embryogenesis is usually induced by many factors such as conditions of donor plant growth, genotype, microspore developmental stage, culture medium composition, and culture conditions. The reprogramming of microspores from the gametophytic to the sporophytic habit of development depends on various stress factors. Certain pretreatments of microspores, such as high temperature and colchicine, can favor androgenesis in Brassica species. Plant regeneration from microspores can be improved by proper application of different growth regulators (ethylene, abscisic acid, and indole acetic acid). Optimal combinations of these factors are mandatory for efficient androgenesis. In this review, we summarize the experience of our colleagues in DH-technology in the Brassica genus. Attention is focused on some factors influencing the development of doubled haploid plants and their impact on enhancing the efficiency of androgenesis in Brassica species.
ISSN:2500-3259