Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent Models

We present a finite difference method working on sparse grids to solve higher dimensional heterogeneous agent models. If one wants to solve the arising Hamilton–Jacobi–Bellman equation on a standard full grid, one faces the problem that the number of grid points grows exponentially with the number o...

Full description

Saved in:
Bibliographic Details
Main Authors: Jochen Garcke, Steffen Ruttscheidt
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/1/40
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589418516447232
author Jochen Garcke
Steffen Ruttscheidt
author_facet Jochen Garcke
Steffen Ruttscheidt
author_sort Jochen Garcke
collection DOAJ
description We present a finite difference method working on sparse grids to solve higher dimensional heterogeneous agent models. If one wants to solve the arising Hamilton–Jacobi–Bellman equation on a standard full grid, one faces the problem that the number of grid points grows exponentially with the number of dimensions. Discretizations on sparse grids only involve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><mi>N</mi><msup><mrow><mo>(</mo><mo form="prefix">log</mo><mi>N</mi><mo>)</mo></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> degrees of freedom in comparison to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>N</mi><mi>d</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula> degrees of freedom of conventional methods, where <i>N</i> denotes the number of grid points in one coordinate direction and <i>d</i> is the dimension of the problem. While one can show convergence for the used finite difference method on full grids by using the theory introduced by Barles and Souganidis, we explain why one cannot simply use their results for sparse grids. Our numerical studies show that our method converges to the full grid solution for a two-dimensional model. We analyze the convergence behavior for higher dimensional models and experiment with different sparse grid adaptivity types.
format Article
id doaj-art-9ec5d6f936e54968ac07703cc98d4875
institution Kabale University
issn 1999-4893
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Algorithms
spelling doaj-art-9ec5d6f936e54968ac07703cc98d48752025-01-24T13:17:34ZengMDPI AGAlgorithms1999-48932025-01-011814010.3390/a18010040Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent ModelsJochen Garcke0Steffen Ruttscheidt1Institut für Numerische Simulation, Universität Bonn, 53111 Bonn, GermanyInstitut für Numerische Simulation, Universität Bonn, 53111 Bonn, GermanyWe present a finite difference method working on sparse grids to solve higher dimensional heterogeneous agent models. If one wants to solve the arising Hamilton–Jacobi–Bellman equation on a standard full grid, one faces the problem that the number of grid points grows exponentially with the number of dimensions. Discretizations on sparse grids only involve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><mi>N</mi><msup><mrow><mo>(</mo><mo form="prefix">log</mo><mi>N</mi><mo>)</mo></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> degrees of freedom in comparison to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>N</mi><mi>d</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula> degrees of freedom of conventional methods, where <i>N</i> denotes the number of grid points in one coordinate direction and <i>d</i> is the dimension of the problem. While one can show convergence for the used finite difference method on full grids by using the theory introduced by Barles and Souganidis, we explain why one cannot simply use their results for sparse grids. Our numerical studies show that our method converges to the full grid solution for a two-dimensional model. We analyze the convergence behavior for higher dimensional models and experiment with different sparse grid adaptivity types.https://www.mdpi.com/1999-4893/18/1/40sparse gridsHamilton–Jacobi–Bellman equationhigh-dimensional approximation
spellingShingle Jochen Garcke
Steffen Ruttscheidt
Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent Models
Algorithms
sparse grids
Hamilton–Jacobi–Bellman equation
high-dimensional approximation
title Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent Models
title_full Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent Models
title_fullStr Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent Models
title_full_unstemmed Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent Models
title_short Finite Differences on Sparse Grids for Continuous-Time Heterogeneous Agent Models
title_sort finite differences on sparse grids for continuous time heterogeneous agent models
topic sparse grids
Hamilton–Jacobi–Bellman equation
high-dimensional approximation
url https://www.mdpi.com/1999-4893/18/1/40
work_keys_str_mv AT jochengarcke finitedifferencesonsparsegridsforcontinuoustimeheterogeneousagentmodels
AT steffenruttscheidt finitedifferencesonsparsegridsforcontinuoustimeheterogeneousagentmodels