Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem

We study the strong unique continuation property for solutions to the quasilinear elliptic equation -div(|∇u|p(x)-2∇u)+V(x)|u|p(x)-2u=0  in  Ω where V(x)∈LN/p(x)(Ω), Ω is a smooth bounded domain in ℝN, and 1<p(x)<N for x in Ω.

Saved in:
Bibliographic Details
Main Authors: Johnny Cuadro, Gabriel López
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/108671
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558815867830272
author Johnny Cuadro
Gabriel López
author_facet Johnny Cuadro
Gabriel López
author_sort Johnny Cuadro
collection DOAJ
description We study the strong unique continuation property for solutions to the quasilinear elliptic equation -div(|∇u|p(x)-2∇u)+V(x)|u|p(x)-2u=0  in  Ω where V(x)∈LN/p(x)(Ω), Ω is a smooth bounded domain in ℝN, and 1<p(x)<N for x in Ω.
format Article
id doaj-art-9ead07ec8cbe486498c86fb7a98f0e23
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-9ead07ec8cbe486498c86fb7a98f0e232025-02-03T01:31:29ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/108671108671Strong Unique Continuation for Solutions of a p(x)-Laplacian ProblemJohnny Cuadro0Gabriel López1Mathematics Department, Universidad Autónoma Metropolitana, Avenue San Rafael Atlixco No. 186, Col. Vicentina Del. Iztapalapa, 09340 México City, DF, MexicoMathematics Department, Universidad Autónoma Metropolitana, Avenue San Rafael Atlixco No. 186, Col. Vicentina Del. Iztapalapa, 09340 México City, DF, MexicoWe study the strong unique continuation property for solutions to the quasilinear elliptic equation -div(|∇u|p(x)-2∇u)+V(x)|u|p(x)-2u=0  in  Ω where V(x)∈LN/p(x)(Ω), Ω is a smooth bounded domain in ℝN, and 1<p(x)<N for x in Ω.http://dx.doi.org/10.1155/2012/108671
spellingShingle Johnny Cuadro
Gabriel López
Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem
International Journal of Mathematics and Mathematical Sciences
title Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem
title_full Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem
title_fullStr Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem
title_full_unstemmed Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem
title_short Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem
title_sort strong unique continuation for solutions of a p x laplacian problem
url http://dx.doi.org/10.1155/2012/108671
work_keys_str_mv AT johnnycuadro stronguniquecontinuationforsolutionsofapxlaplacianproblem
AT gabriellopez stronguniquecontinuationforsolutionsofapxlaplacianproblem