Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem
We study the strong unique continuation property for solutions to the quasilinear elliptic equation -div(|∇u|p(x)-2∇u)+V(x)|u|p(x)-2u=0 in Ω where V(x)∈LN/p(x)(Ω), Ω is a smooth bounded domain in ℝN, and 1<p(x)<N for x in Ω.
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2012/108671 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558815867830272 |
---|---|
author | Johnny Cuadro Gabriel López |
author_facet | Johnny Cuadro Gabriel López |
author_sort | Johnny Cuadro |
collection | DOAJ |
description | We study the strong unique continuation property for solutions to the quasilinear elliptic equation -div(|∇u|p(x)-2∇u)+V(x)|u|p(x)-2u=0 in Ω
where V(x)∈LN/p(x)(Ω), Ω is a smooth bounded domain in ℝN, and 1<p(x)<N for x in Ω. |
format | Article |
id | doaj-art-9ead07ec8cbe486498c86fb7a98f0e23 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-9ead07ec8cbe486498c86fb7a98f0e232025-02-03T01:31:29ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/108671108671Strong Unique Continuation for Solutions of a p(x)-Laplacian ProblemJohnny Cuadro0Gabriel López1Mathematics Department, Universidad Autónoma Metropolitana, Avenue San Rafael Atlixco No. 186, Col. Vicentina Del. Iztapalapa, 09340 México City, DF, MexicoMathematics Department, Universidad Autónoma Metropolitana, Avenue San Rafael Atlixco No. 186, Col. Vicentina Del. Iztapalapa, 09340 México City, DF, MexicoWe study the strong unique continuation property for solutions to the quasilinear elliptic equation -div(|∇u|p(x)-2∇u)+V(x)|u|p(x)-2u=0 in Ω where V(x)∈LN/p(x)(Ω), Ω is a smooth bounded domain in ℝN, and 1<p(x)<N for x in Ω.http://dx.doi.org/10.1155/2012/108671 |
spellingShingle | Johnny Cuadro Gabriel López Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem International Journal of Mathematics and Mathematical Sciences |
title | Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem |
title_full | Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem |
title_fullStr | Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem |
title_full_unstemmed | Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem |
title_short | Strong Unique Continuation for Solutions of a p(x)-Laplacian Problem |
title_sort | strong unique continuation for solutions of a p x laplacian problem |
url | http://dx.doi.org/10.1155/2012/108671 |
work_keys_str_mv | AT johnnycuadro stronguniquecontinuationforsolutionsofapxlaplacianproblem AT gabriellopez stronguniquecontinuationforsolutionsofapxlaplacianproblem |