Integrated Technologies for Smart Building Energy Systems Refurbishment: A Case Study in Italy

This study presents an integrated approach for adapting building energy systems using Machine Learning (ML), the Internet of Things (IoT), and Building Information Modeling (BIM) in a hotel retrofit in Italy. In a concise multi-stage process, long-term climatic data and on-site technical documentati...

Full description

Saved in:
Bibliographic Details
Main Authors: Lorenzo Villani, Martina Casciola, Davide Astiaso Garcia
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/7/1041
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents an integrated approach for adapting building energy systems using Machine Learning (ML), the Internet of Things (IoT), and Building Information Modeling (BIM) in a hotel retrofit in Italy. In a concise multi-stage process, long-term climatic data and on-site technical documentation were analyzed to create a detailed BIM model. This model enabled energy simulations using the Carrier–Pizzetti method and supported the design of a hybrid HVAC system—integrating VRF and hydronic circuits—further enhanced by a custom ML algorithm for adaptive, predictive energy management through BIM and IoT data fusion. The study also incorporated photovoltaic panels and solar collectors, reducing reliance on non-renewable energy sources. Results demonstrate the effectiveness of smart energy management, showcasing significant potential for scalability in similar building typologies. Future improvements include integrating a temporal evolution model, refining feature selection using advanced optimization techniques, and expanding validation across multiple case studies. This research highlights the transformative role of ML, IoT, and BIM in achieving sustainable, smart, and efficient building energy systems, offering a replicable framework for sustainable renovations in the hospitality sector.
ISSN:2075-5309