Online Real-Time Trajectory Analysis Based on Adaptive Time Interval Clustering Algorithm
With the development of Chinese international trade, real-time processing systems based on ship trajectory have been used to cluster trajectory in real-time, so that the hot zone information of a sea ship can be discovered in real-time. This technology has great research value for the future plannin...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tsinghua University Press
2020-06-01
|
Series: | Big Data Mining and Analytics |
Subjects: | |
Online Access: | https://www.sciopen.com/article/10.26599/BDMA.2019.9020022 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the development of Chinese international trade, real-time processing systems based on ship trajectory have been used to cluster trajectory in real-time, so that the hot zone information of a sea ship can be discovered in real-time. This technology has great research value for the future planning of maritime traffic. However, ship navigation characteristics cannot be found in real-time with a ship Automatic Identification System (AIS) positioning system, and the clustering effect based on the density grid fixed-time-interval algorithm cannot resolve the shortcomings of real-time clustering. This study proposes an adaptive time interval clustering algorithm based on density grid (called DAC-Stream). This algorithm can perform adaptive time-interval clustering according to the size of the real-time ship trajectory data stream, so that a ship’s hot zone information can be found efficiently and in real-time. Experimental results show that the DAC-Stream algorithm improves the clustering effect and accelerates data processing compared with the fixed-time-interval clustering algorithm based on density grid (called DC-Stream). |
---|---|
ISSN: | 2096-0654 |