Spatially heterogeneous invasion of toxic plant mediated by herbivory

Spatially homogeneous (ODE) and reaction-diffusion models for plant-herbivore interactions with toxin-determined functional response are analyzed. The models include two plant species that have different levels of toxicity. The plant species with a higher level of toxicity is assumed to be less pre...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis
Format: Article
Language:English
Published: AIMS Press 2013-07-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2013.10.1519
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spatially homogeneous (ODE) and reaction-diffusion models for plant-herbivore interactions with toxin-determined functional response are analyzed. The models include two plant species that have different levels of toxicity. The plant species with a higher level of toxicity is assumed to be less preferred by the herbivore and to have a relatively lower intrinsic growth rate than the less toxic plant species. Two of the equilibrium points of the system representing significant ecological interests are $E_1$, in which only the less toxic plant is present, and$E_2$, in which the more toxic plant and herbivore coexist while the less toxic plant has gone to extinction. Under certain conditions it is shown that, for the spatially homogeneous system all solutions will converge to the equilibrium $E_2$, whereas for the reaction-diffusion model there exist traveling wave solutions connecting $E_1$ and $E_2$.
ISSN:1551-0018