Exploring Mechanical Features of 3D Head and Neck Cancer Models
Head and neck squamous cell carcinoma (HNSCC) presents significant challenges in oncology due to its complex biology and poor prognosis. Traditional two-dimensional (2D) cell culture models cannot replicate the intricate tumor microenvironment, limiting their usefulness in studying disease mechanism...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Journal of Functional Biomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4983/16/3/74 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Head and neck squamous cell carcinoma (HNSCC) presents significant challenges in oncology due to its complex biology and poor prognosis. Traditional two-dimensional (2D) cell culture models cannot replicate the intricate tumor microenvironment, limiting their usefulness in studying disease mechanisms and testing therapies. In contrast, three-dimensional (3D) in vitro models provide more realistic platforms that better mimic the architecture, mechanical features, and cellular interactions of HNSCC. This review explores the mechanical properties of 3D in vitro models developed for HNSCC research. It highlights key 3D culture techniques, such as spheroids, organoids, and bioprinted tissues, emphasizing their ability to simulate critical tumor characteristics like hypoxia, drug resistance, and metastasis. Particular attention is given to stiffness, elasticity, and dynamic behavior, highlighting how these models emulate native tumor tissues. By enhancing the physiological relevance of in vitro studies, 3D models offer significant potential to revolutionize HNSCC research and facilitate the development of effective, personalized therapeutic strategies. This review bridges the gap between preclinical and clinical applications by summarizing the mechanical properties of 3D models and providing guidance for developing systems that replicate both biological and mechanical characteristics of tumor tissues, advancing innovation in cancer research and therapy. |
|---|---|
| ISSN: | 2079-4983 |