Study on the Component-Based Model of an All-Welded Beam-Column Connection for Progressive Collapse Analysis

The mechanical behavior of all-welded beam-column connections of steel frames during progressive collapse was numerically studied using finite element simulations. The validation of the numerical model was based on a previous test model. The analysis results indicated that the stiffness of the all-w...

Full description

Saved in:
Bibliographic Details
Main Authors: Fuzhe Xie, Wenyuan Liu, Bin Gu, Hai Qian
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2020/8847866
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanical behavior of all-welded beam-column connections of steel frames during progressive collapse was numerically studied using finite element simulations. The validation of the numerical model was based on a previous test model. The analysis results indicated that the stiffness of the all-welded beam-column connection in the elastic-plastic stage was mainly provided by the shear stiffness of the panel zone, and the axial compression on the column had a substantial impact on the capacity and ductility of the all-welded beam-column connection. An improved component-based model of the all-welded beam-column connection was proposed. To verify the accuracy of the proposed model, a beam-column assembly with an all-welded connection was established and the influence of the catenary action, column axial compression, beam-column stiffness ratio, and dynamic performance was parametrically analyzed. The validation results showed that the proposed model was able to simulate the behavior of all-welded beam-column connections at large structural deformation.
ISSN:1687-8086
1687-8094