Direct Nuclear Delivery of Proteins on Living Plant via Partial Enzymatic Cell Wall Digestion

Nuclear protein delivery underlies an array of biotechnological and therapeutic applications. While many variations of protein delivery methods have been described, it can still be difficult or inefficient to introduce exogenous proteins into plants. A major barrier to progress is the cell wall whic...

Full description

Saved in:
Bibliographic Details
Main Authors: Qufei Gu, Nathan Ming, Yalikunjiang Aizezi, Xiaoyang Wei, Yizhong Yuan, Brian Esquivel, Zhi-Yong Wang
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Current Issues in Molecular Biology
Subjects:
Online Access:https://www.mdpi.com/1467-3045/46/12/870
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nuclear protein delivery underlies an array of biotechnological and therapeutic applications. While many variations of protein delivery methods have been described, it can still be difficult or inefficient to introduce exogenous proteins into plants. A major barrier to progress is the cell wall which is primarily composed of polysaccharides and thus only permeable to small molecules. Here, we report a partial enzymatic cell wall digestion-mediated uptake method that efficiently delivers protein into the nucleus of plant cells. Such a method allowed efficient nuclear delivery of green fluorescent protein (GFP) flanked by two nuclear localization sequences (NLS) into <i>Arabidopsis thaliana</i> epidermal root cells without the usual need for large doses of nanoparticles or tissue cultures. We also show that switching from daylight to far-red light-grown conditions promotes effective protein penetration into deep cell layers. This study establishes that a partial enzymatic cell wall degradation could be applied to other cell organelles by changing the localization sequence, paving the way toward the rational engineering of plants.
ISSN:1467-3037
1467-3045