Structure-based discovery and experimental validation of HIT101481851 as a potential PKMYT1 inhibitor for pancreatic cancer

PKMYT1 is a validated therapeutic target in pancreatic cancer due to its critical role in controlling the G2/M transition of the cell cycle. In this study, a structure-based drug discovery pipeline was implemented to identify novel PKMYT1 inhibitors with high binding stability and anticancer potenti...

Full description

Saved in:
Bibliographic Details
Main Authors: Ting Wang, Jingyu Wang, Gongxiong Yao, Hongchao Zhang, Chenghui Song, Xueren Ao
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-06-01
Series:Frontiers in Pharmacology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphar.2025.1605741/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PKMYT1 is a validated therapeutic target in pancreatic cancer due to its critical role in controlling the G2/M transition of the cell cycle. In this study, a structure-based drug discovery pipeline was implemented to identify novel PKMYT1 inhibitors with high binding stability and anticancer potential. Pharmacophore models were constructed from four PKMYT1 co-crystal structures, and virtual screening was performed against a large compound library. Through molecular docking and intersection analysis, five consensus high-affinity compounds were identified, among which HIT101481851 demonstrated the most favorable binding characteristics. Molecular dynamics simulations confirmed its stable interactions with key residues such as CYS-190 and PHE-240 across multiple PKMYT1 conformations. ADMET predictions indicated good gastrointestinal absorption, acceptable drug-likeness, and low risk of off-target reactivity. Furthermore, in vivo experiments showed that HIT101481851 inhibited the viability of pancreatic cancer cell lines in a dose-dependent manner while exhibiting lower toxicity toward normal pancreatic epithelial cells. These results suggest that HIT101481851 is a promising lead compound for the development of PKMYT1-targeted therapeutics in pancreatic cancer.
ISSN:1663-9812