On the Definitions of Nabla Fractional Operators

We show that two recent definitions of discrete nabla fractional sum operators are related. Obtaining such a relation between two operators allows one to prove basic properties of the one operator by using the known properties of the other. We illustrate this idea with proving power rule and commuta...

Full description

Saved in:
Bibliographic Details
Main Authors: Thabet Abdeljawad, Ferhan M. Atici
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/406757
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that two recent definitions of discrete nabla fractional sum operators are related. Obtaining such a relation between two operators allows one to prove basic properties of the one operator by using the known properties of the other. We illustrate this idea with proving power rule and commutative property of discrete fractional sum operators. We also introduce and prove summation by parts formulas for the right and left fractional sum and difference operators, where we employ the Riemann-Liouville definition of the fractional difference. We formalize initial value problems for nonlinear fractional difference equations as an application of our findings. An alternative definition for the nabla right fractional difference operator is also introduced.
ISSN:1085-3375
1687-0409