Spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgery

Abstract The impact of three-dimensional (3D) dose delivery accuracy of C-arm linacs on the planning target volume (PTV) margin was evaluated for non-coplanar intracranial stereotactic radiosurgery (SRS). A multi-institutional 3D starshot test using beams from seven directions was conducted at 22 cl...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuta Takahashi, Riki Oshika, Rie Tachibana, Katsuyuki Shirai, Hiroshi Asakura, Masayoshi Miyazaki, Tomohiro Sagawa, Shinichi Takahashi, Tsunekazu Kuwae, Hironori Kojima, Shiro Nishiyama, Hikaru Nemoto, Yoshitomo Ishihara, Mariko Umeda, Kotaro Kijima, Daisuke Kobayashi, Keiji Suzuki, Yuki Nozawa, Kento Hoshida, Tomoki Kitagawa, Hiromitsu Endo, Yuki Matsunaga, Hiroya Itagaki, Mayumi Ishida, Shigeru Kanahara, Ryo Horita, Daisuke Hori, Hidenobu Tachibana
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-87769-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571743264309248
author Yuta Takahashi
Riki Oshika
Rie Tachibana
Katsuyuki Shirai
Hiroshi Asakura
Masayoshi Miyazaki
Tomohiro Sagawa
Shinichi Takahashi
Tsunekazu Kuwae
Hironori Kojima
Shiro Nishiyama
Hikaru Nemoto
Yoshitomo Ishihara
Mariko Umeda
Kotaro Kijima
Daisuke Kobayashi
Keiji Suzuki
Yuki Nozawa
Kento Hoshida
Tomoki Kitagawa
Hiromitsu Endo
Yuki Matsunaga
Hiroya Itagaki
Mayumi Ishida
Shigeru Kanahara
Ryo Horita
Daisuke Hori
Hidenobu Tachibana
author_facet Yuta Takahashi
Riki Oshika
Rie Tachibana
Katsuyuki Shirai
Hiroshi Asakura
Masayoshi Miyazaki
Tomohiro Sagawa
Shinichi Takahashi
Tsunekazu Kuwae
Hironori Kojima
Shiro Nishiyama
Hikaru Nemoto
Yoshitomo Ishihara
Mariko Umeda
Kotaro Kijima
Daisuke Kobayashi
Keiji Suzuki
Yuki Nozawa
Kento Hoshida
Tomoki Kitagawa
Hiromitsu Endo
Yuki Matsunaga
Hiroya Itagaki
Mayumi Ishida
Shigeru Kanahara
Ryo Horita
Daisuke Hori
Hidenobu Tachibana
author_sort Yuta Takahashi
collection DOAJ
description Abstract The impact of three-dimensional (3D) dose delivery accuracy of C-arm linacs on the planning target volume (PTV) margin was evaluated for non-coplanar intracranial stereotactic radiosurgery (SRS). A multi-institutional 3D starshot test using beams from seven directions was conducted at 22 clinics using Varian and Elekta linacs with X-ray CT-based polymer gel dosimeters. Variability in dose delivery accuracy was observed, with the distance between the imaging isocenter and each beam exceeding 1 mm at one institution for Varian and nine institutions for Elekta. The calculated PTV margins for Varian and Elekta linacs that could cover the gross tumor volume with 95% probability at 95% of the institutions were 2.3 and 3.5 mm, respectively, in the superior–inferior direction. However, with multifactorial system management (i.e., high-accuracy 3D dose delivery with rigorous linac quality assurance, strict patient immobilization, and high intra-fractional positioning accuracy), these margins could be reduced to 1.0 mm and 1.5 mm, respectively. The findings indicate significant millimeter-level variability in 3D dose delivery accuracy among linacs installed in clinical settings. Thus, maximizing a linac’s 3D dose delivery accuracy is essential to achieve the required PTV margin in intracranial SRS.
format Article
id doaj-art-9d2d723d7e874d9dada4581f7259f060
institution Kabale University
issn 2045-2322
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-9d2d723d7e874d9dada4581f7259f0602025-02-02T12:22:51ZengNature PortfolioScientific Reports2045-23222025-01-0115111210.1038/s41598-025-87769-zSpatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgeryYuta Takahashi0Riki Oshika1Rie Tachibana2Katsuyuki Shirai3Hiroshi Asakura4Masayoshi Miyazaki5Tomohiro Sagawa6Shinichi Takahashi7Tsunekazu Kuwae8Hironori Kojima9Shiro Nishiyama10Hikaru Nemoto11Yoshitomo Ishihara12Mariko Umeda13Kotaro Kijima14Daisuke Kobayashi15Keiji Suzuki16Yuki Nozawa17Kento Hoshida18Tomoki Kitagawa19Hiromitsu Endo20Yuki Matsunaga21Hiroya Itagaki22Mayumi Ishida23Shigeru Kanahara24Ryo Horita25Daisuke Hori26Hidenobu Tachibana27Division of Radiation Medical Physics, Jichi Medical University Saitama Medical CenterRadiation Safety and Quality Assurance division, National Cancer Center Hospital EastTriangle Products Co. LtdDepartment of Radiation Oncology, Jichi Medical University HospitalRadiation Oncology Center, Dokkyo Medical University HospitalDepartment of Radiation Oncology, Osaka International Cancer InstituteDepartment of Radiation Oncology, Osaka International Cancer InstituteDivision of Radiation Technology, Hospital East, National Cancer CenterDivision of Radiology, Yuuai Medical CenterDepartment of Radiology, Kanazawa University HospitalDepartment of Radiotechnology, Saiseikai Kawaguchi General HospitalDepartment of Radiology, University of YamanashiDepartment of Radiation Oncology, Division of Medical Physics, Japanese Red Cross Wakayama Medical CenterDepartment of Radiation Oncology, Saitama Medical Center, Saitama Medical UniversityDepartment of Radiology, NHO Saitama HospitalDepartment of Radiology, University of Tsukuba HospitalDepartment of Radiology, University of Tsukuba HospitalDepartment of Radiology, The University of Tokyo HospitalDepartment of Radiology, Kurume University HospitalDepartment of Radiation Oncology, Aichi Cancer Center HospitalDepartment of Radiation Physics and Technology, Southern TOHOKU General HospitalDepartment of Radiology, Fukuoka Tokushukai HospitalDepartment of Radiology, Niigata City General HospitalDivision of Radiology, JCHO Osaka HospitalCentral Radiology Division, Kawasaki Medical School General Medical CenterCentral Radiology Division, Nagoya City University East Medical CenterDepartment of Radiology, Japanese Red Cross Nagasaki Genbaku HospitalRadiation Safety and Quality Assurance division, National Cancer Center Hospital EastAbstract The impact of three-dimensional (3D) dose delivery accuracy of C-arm linacs on the planning target volume (PTV) margin was evaluated for non-coplanar intracranial stereotactic radiosurgery (SRS). A multi-institutional 3D starshot test using beams from seven directions was conducted at 22 clinics using Varian and Elekta linacs with X-ray CT-based polymer gel dosimeters. Variability in dose delivery accuracy was observed, with the distance between the imaging isocenter and each beam exceeding 1 mm at one institution for Varian and nine institutions for Elekta. The calculated PTV margins for Varian and Elekta linacs that could cover the gross tumor volume with 95% probability at 95% of the institutions were 2.3 and 3.5 mm, respectively, in the superior–inferior direction. However, with multifactorial system management (i.e., high-accuracy 3D dose delivery with rigorous linac quality assurance, strict patient immobilization, and high intra-fractional positioning accuracy), these margins could be reduced to 1.0 mm and 1.5 mm, respectively. The findings indicate significant millimeter-level variability in 3D dose delivery accuracy among linacs installed in clinical settings. Thus, maximizing a linac’s 3D dose delivery accuracy is essential to achieve the required PTV margin in intracranial SRS.https://doi.org/10.1038/s41598-025-87769-zSRSLinacThree-dimensional dose delivery accuracyMargin sizeGel dosimeterMulti-institution
spellingShingle Yuta Takahashi
Riki Oshika
Rie Tachibana
Katsuyuki Shirai
Hiroshi Asakura
Masayoshi Miyazaki
Tomohiro Sagawa
Shinichi Takahashi
Tsunekazu Kuwae
Hironori Kojima
Shiro Nishiyama
Hikaru Nemoto
Yoshitomo Ishihara
Mariko Umeda
Kotaro Kijima
Daisuke Kobayashi
Keiji Suzuki
Yuki Nozawa
Kento Hoshida
Tomoki Kitagawa
Hiromitsu Endo
Yuki Matsunaga
Hiroya Itagaki
Mayumi Ishida
Shigeru Kanahara
Ryo Horita
Daisuke Hori
Hidenobu Tachibana
Spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgery
Scientific Reports
SRS
Linac
Three-dimensional dose delivery accuracy
Margin size
Gel dosimeter
Multi-institution
title Spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgery
title_full Spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgery
title_fullStr Spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgery
title_full_unstemmed Spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgery
title_short Spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator-based intracranial stereotactic radiosurgery
title_sort spatial accuracy of dose delivery significantly impacts the planning target volume margin in linear accelerator based intracranial stereotactic radiosurgery
topic SRS
Linac
Three-dimensional dose delivery accuracy
Margin size
Gel dosimeter
Multi-institution
url https://doi.org/10.1038/s41598-025-87769-z
work_keys_str_mv AT yutatakahashi spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT rikioshika spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT rietachibana spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT katsuyukishirai spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT hiroshiasakura spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT masayoshimiyazaki spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT tomohirosagawa spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT shinichitakahashi spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT tsunekazukuwae spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT hironorikojima spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT shironishiyama spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT hikarunemoto spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT yoshitomoishihara spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT marikoumeda spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT kotarokijima spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT daisukekobayashi spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT keijisuzuki spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT yukinozawa spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT kentohoshida spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT tomokikitagawa spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT hiromitsuendo spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT yukimatsunaga spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT hiroyaitagaki spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT mayumiishida spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT shigerukanahara spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT ryohorita spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT daisukehori spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery
AT hidenobutachibana spatialaccuracyofdosedeliverysignificantlyimpactstheplanningtargetvolumemargininlinearacceleratorbasedintracranialstereotacticradiosurgery