The VMD-Informer-BiLSTM-EAA Hybrid Model for Predicting Zenith Tropospheric Delay

Zenith Tropospheric Delay (ZTD) is a significant source of atmospheric error in the Global Navigation Satellite System (GNSS). Developing a high-accuracy ZTD prediction model is essential for both GNSS positioning and GNSS meteorology. To address the challenges of incomplete information extraction a...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhengdao Yuan, Xu Lin, Yashi Xu, Ruiting Dai, Cong Yang, Lunwei Zhao, Yakun Han
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/4/672
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zenith Tropospheric Delay (ZTD) is a significant source of atmospheric error in the Global Navigation Satellite System (GNSS). Developing a high-accuracy ZTD prediction model is essential for both GNSS positioning and GNSS meteorology. To address the challenges of incomplete information extraction and gradient explosion present in current single and combined neural network models that utilize serial ensemble learning, this study proposes a VMD-Informer-BiLSTM-EAA hybrid model based on a parallel ensemble learning strategy. Additionally, it takes into account the non-stationarity of the ZTD sequence. The model employs the Variational Mode Decomposition (VMD) method to address the non-stationarity of ZTD. It utilizes both the informer and Bidirectional Long Short-Term Memory (BiLSTM) architectures to learn ZTD data in parallel, effectively capturing both long-term trends and short-term dynamic changes. The features are then fused using the Efficient Additive Attention (EAA) mechanism, which assigns weights to create a more comprehensive representation of the ZTD data. This enhanced representation ultimately leads to improved predictions of ZTD values. We fill in the missing parts of the GNSS-derived ZTD using the ZTD data from ERA5, sourced from the IGS stations in the Australian region, specifically at 12 IGS stations. These interpolated data are then used to develop a VMD-Informer-BiLSTM-EAA hybrid model for ZTD predictions with a one-year forecast horizon. We applied this model to predict the ZTD for each IGS station in our study area for the year 2021. The numerical results indicate that our model outperforms several comparative models, such as VMD–Informer, Transformer, BiLSTM and GPT3, based on the following key metrics: a Root Mean Square Error (RMSE) of 1.43 cm, a Mean Absolute Error (MAE) of 1.15 cm, a Standard Deviation (STD) of 1.33 cm and a correlation coefficient (R) of 0.96. Furthermore, our model reduces the training time by 8.2% compared to the Transformer model, demonstrating superior prediction performance and robustness in long-term ZTD forecasting. This study introduces a novel approach for high-accuracy ZTD modeling, which is significantly beneficial for precise GNSS positioning and the detection of water vapor content.
ISSN:2072-4292