H2O/O2 Vapor Annealing Effect on Spin Coating Alumina Thin Films for Passivation of Silicon Solar Cells
Aluminum acetylacetonate-based AlOx thin films were introduced as a low-cost, high-quality passivation layers for crystalline silicon solar cells. Films were formed by a spin coating method on p-type silicon substrates at 450°C in ambient air, O2, or water vapor (H2O/O2) for 15 or 120 min. XPS analy...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2019/4604932 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aluminum acetylacetonate-based AlOx thin films were introduced as a low-cost, high-quality passivation layers for crystalline silicon solar cells. Films were formed by a spin coating method on p-type silicon substrates at 450°C in ambient air, O2, or water vapor (H2O/O2) for 15 or 120 min. XPS analysis confirms the AlOx formation and reveals a high intensity of interfacial SiOx at the AlOx/Si interface of processed wafers. Ambient H2O/O2 was found to be more beneficial for the activation of introduced AlOx passivation films which offers high lifetime improvements with a low thermal budget. Carrier lifetime measurements provides that symmetrically coated wafers reach 119.3 μs and 248.3 μs after annealing in ambient H2O/O2 for 15 min and 120 min, respectively. |
---|---|
ISSN: | 1110-662X 1687-529X |