Determination of the Critical State Line in Partially Frozen Sand

A new method for measuring internal pore water pressure (PWP) is introduced to determine the critical state line (CSL) in partially frozen sand, investigating the influence of temperature and strain rate on the critical state parameters. A series of consolidated undrained and drained triaxial tests,...

Full description

Saved in:
Bibliographic Details
Main Authors: Yawu Liang, Nicholas Beier, Dave C. Sego
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Geotechnics
Subjects:
Online Access:https://www.mdpi.com/2673-7094/5/1/10
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new method for measuring internal pore water pressure (PWP) is introduced to determine the critical state line (CSL) in partially frozen sand, investigating the influence of temperature and strain rate on the critical state parameters. A series of consolidated undrained and drained triaxial tests, along with internal PWP measurements, were conducted on both dense and loose specimens under different temperatures and strain rates. Similarly to unfrozen sand, a unique CSL was established for the partially frozen sand at −3 °C in both stress (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mo>′</mo></msup></semantics></math></inline-formula>) and void ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>e</mi></mrow></semantics></math></inline-formula><i>-</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>p</mi><mo>′</mo></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> space. The results show that the critical state friction angle (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>φ</mi><mrow><mi>c</mi><mi>s</mi></mrow><mo>′</mo></msubsup></mrow></semantics></math></inline-formula>) is not affected by temperature (warmer than −5 °C) and strain rate, while the critical state cohesion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>c</mi><mrow><mi>c</mi><mi>s</mi></mrow><mo>′</mo></msubsup></mrow></semantics></math></inline-formula>) varies with temperature, strain rate and failure mode. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>c</mi><mrow><mi>c</mi><mi>s</mi></mrow><mo>′</mo></msubsup></mrow></semantics></math></inline-formula> increases with decreasing temperature from 23 °C to −3 °C and to −10 °C, but decreases to zero when the strain rate was reduced from 1%/min to 0.1%/min. In <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>e</mi></semantics></math></inline-formula><i>-</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mo>′</mo></msup></semantics></math></inline-formula> space, the slope of CSL could be associated with the dilation of partially frozen sand, which increases with decreasing temperature and increasing strain rate, potentially due to the increased contact area between the pore ice and sand grains.
ISSN:2673-7094