Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems

We give several sufficient conditions under which the first-order nonlinear Hamiltonian system x'(t)=α(t)x(t)+f(t,y(t)),  y'(t)=-g(t,x(t))-α(t)y(t) has no solution (x(t),y(t)) satisfying condition 0<∫-∞+∞[|x(t)|ν+(1+β(t))|y(t)|μ]dt<+∞‍, where μ,ν>1 and (1/μ)+(1/ν)=1, 0≤xf(t,x)≤β(t...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoyan Lin, Qi-Ming Zhang, X. H. Tang
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/547682
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546615272931328
author Xiaoyan Lin
Qi-Ming Zhang
X. H. Tang
author_facet Xiaoyan Lin
Qi-Ming Zhang
X. H. Tang
author_sort Xiaoyan Lin
collection DOAJ
description We give several sufficient conditions under which the first-order nonlinear Hamiltonian system x'(t)=α(t)x(t)+f(t,y(t)),  y'(t)=-g(t,x(t))-α(t)y(t) has no solution (x(t),y(t)) satisfying condition 0<∫-∞+∞[|x(t)|ν+(1+β(t))|y(t)|μ]dt<+∞‍, where μ,ν>1 and (1/μ)+(1/ν)=1, 0≤xf(t,x)≤β(t)|x|μ, xg(t,x)≤γ0(t)|x|ν, β(t),γ0(t)≥0, and α(t) are locally Lebesgue integrable real-valued functions defined on ℝ.
format Article
id doaj-art-9b1c6632d01b4beea17c5f9259ca492b
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-9b1c6632d01b4beea17c5f9259ca492b2025-02-03T06:47:53ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/547682547682Nonexistence of Homoclinic Orbits for a Class of Hamiltonian SystemsXiaoyan Lin0Qi-Ming Zhang1X. H. Tang2Department of Mathematics, Huaihua College, Huaihua, Hunan 418008, ChinaCollege of Science, Hunan University of Technology, Zhuzhou, Hunan 412007, ChinaSchool of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, ChinaWe give several sufficient conditions under which the first-order nonlinear Hamiltonian system x'(t)=α(t)x(t)+f(t,y(t)),  y'(t)=-g(t,x(t))-α(t)y(t) has no solution (x(t),y(t)) satisfying condition 0<∫-∞+∞[|x(t)|ν+(1+β(t))|y(t)|μ]dt<+∞‍, where μ,ν>1 and (1/μ)+(1/ν)=1, 0≤xf(t,x)≤β(t)|x|μ, xg(t,x)≤γ0(t)|x|ν, β(t),γ0(t)≥0, and α(t) are locally Lebesgue integrable real-valued functions defined on ℝ.http://dx.doi.org/10.1155/2013/547682
spellingShingle Xiaoyan Lin
Qi-Ming Zhang
X. H. Tang
Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems
Abstract and Applied Analysis
title Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems
title_full Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems
title_fullStr Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems
title_full_unstemmed Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems
title_short Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems
title_sort nonexistence of homoclinic orbits for a class of hamiltonian systems
url http://dx.doi.org/10.1155/2013/547682
work_keys_str_mv AT xiaoyanlin nonexistenceofhomoclinicorbitsforaclassofhamiltoniansystems
AT qimingzhang nonexistenceofhomoclinicorbitsforaclassofhamiltoniansystems
AT xhtang nonexistenceofhomoclinicorbitsforaclassofhamiltoniansystems