Taba Binary, Multinomial, and Ordinal Regression Models: New Machine Learning Methods for Classification

The classification methods of machine learning have been widely used in almost every discipline. A new classification method, called Taba regression, was introduced for analyzing binary, multinomial, and ordinal outcomes. To evaluate the performance of Taba regression, liver cirrhosis data obtained...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad Tabatabai, Derek Wilus, Chau-Kuang Chen, Karan P. Singh, Tim L. Wallace
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/1/2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The classification methods of machine learning have been widely used in almost every discipline. A new classification method, called Taba regression, was introduced for analyzing binary, multinomial, and ordinal outcomes. To evaluate the performance of Taba regression, liver cirrhosis data obtained from a Mayo Clinic study were analyzed. The results were then compared with an artificial neural network (ANN), random forest (RF), logistic regression (LR), and probit analysis (PA). The results using cirrhosis data revealed that the Taba regression model could be a competitor to other classification models based on the true positive rate, F-score, accuracy, and area under the receiver operating characteristic curve (AUC). Taba regression can be used by researchers and practitioners as an alternative method of classification in machine learning. In conclusion, the Taba regression provided a reliable result with respect to accuracy, recall, F-score, and AUC when applied to the cirrhosis data.
ISSN:2306-5354