Effect of Attapulgite Nanorods and Calcium Sulfate Microwhiskers on the Reaction-Induced Phase Separation of Epoxy/PES Blends

The influence of two kinds of mesoscale inorganic rod fillers, nanoscale attapulgite and micron-sized CaSO4 whisker, on the reaction-induced phase separation of epoxy/aromatic amine/poly- (ether sulfone) (PES) blends has been investigated by optical microscopy (OM), scanning electron microscopy (SEM...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaolin Tang, Xinhui Zhong, Guozhu Zhan, Yingfeng Yu, Hongdong Zhang
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2013/268953
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of two kinds of mesoscale inorganic rod fillers, nanoscale attapulgite and micron-sized CaSO4 whisker, on the reaction-induced phase separation of epoxy/aromatic amine/poly- (ether sulfone) (PES) blends has been investigated by optical microscopy (OM), scanning electron microscopy (SEM), and time resolved light scattering (TRLS). By varying the PES concentration and curing temperature, we found that the incorporation of attapulgite and CaSO4 had dramatic impact on the phase separation process and the final phase morphology of blends. In blends at higher content than critical concentration, the process of phase separation was retarded by the incorporation of nanoscale fillers but accelerated by that of the micron-sized fillers, mainly due to the enhanced viscoelastic effect and the preferential wettable effect, respectively. Meanwhile both mesoscale fillers could change the cocontinuous phase structure of blends with lower PES content than critical concentration into PES-rich dispersed structure due to the surface affinity of fillers to epoxy matrix.
ISSN:1687-9422
1687-9430