On Roman balanced domination of graphs
Let $ G $ be a graph with vertex set $ V $. A function $ f $ : $ V\to \{-1, 0, 2\} $ is called a Roman balanced dominating function (RBDF) of $ G $ if $ \sum_{u\in N_G[v]}f(u) = 0 $ for each vertex $ v\in V $. The maximum (resp. minimum) Roman balanced domination number $ \gamma^{M}_{Rb}(G) $ (resp....
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-12-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20241707 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590762104061952 |
---|---|
author | Mingyu Zhang Junxia Zhang |
author_facet | Mingyu Zhang Junxia Zhang |
author_sort | Mingyu Zhang |
collection | DOAJ |
description | Let $ G $ be a graph with vertex set $ V $. A function $ f $ : $ V\to \{-1, 0, 2\} $ is called a Roman balanced dominating function (RBDF) of $ G $ if $ \sum_{u\in N_G[v]}f(u) = 0 $ for each vertex $ v\in V $. The maximum (resp. minimum) Roman balanced domination number $ \gamma^{M}_{Rb}(G) $ (resp. $ \gamma^{m}_{Rb}(G) $) is the maximum (resp. minimum) value of $ \sum_{v\in V} f(v) $ among all Roman balanced dominating functions $ f $. A graph $ G $ is called $ Rd $-balanced if $ \gamma^{M}_{Rb}(G) = \gamma^{m}_{Rb}(G) = 0 $. In this paper, we obtain several upper and lower bounds on $ \gamma^{M}_{Rb}(G) $ and $ \gamma^{m}_{Rb}(G) $ and further determine several classes of $ Rd $-balanced graphs. |
format | Article |
id | doaj-art-9ac54719065940a99f88110e4fa77f08 |
institution | Kabale University |
issn | 2473-6988 |
language | English |
publishDate | 2024-12-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj-art-9ac54719065940a99f88110e4fa77f082025-01-23T07:53:25ZengAIMS PressAIMS Mathematics2473-69882024-12-01912360013601110.3934/math.20241707On Roman balanced domination of graphsMingyu Zhang0Junxia Zhang1School of Mathematics and Statistics, Shanxi Datong University, Datong, Shanxi 037009, ChinaSchool of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaLet $ G $ be a graph with vertex set $ V $. A function $ f $ : $ V\to \{-1, 0, 2\} $ is called a Roman balanced dominating function (RBDF) of $ G $ if $ \sum_{u\in N_G[v]}f(u) = 0 $ for each vertex $ v\in V $. The maximum (resp. minimum) Roman balanced domination number $ \gamma^{M}_{Rb}(G) $ (resp. $ \gamma^{m}_{Rb}(G) $) is the maximum (resp. minimum) value of $ \sum_{v\in V} f(v) $ among all Roman balanced dominating functions $ f $. A graph $ G $ is called $ Rd $-balanced if $ \gamma^{M}_{Rb}(G) = \gamma^{m}_{Rb}(G) = 0 $. In this paper, we obtain several upper and lower bounds on $ \gamma^{M}_{Rb}(G) $ and $ \gamma^{m}_{Rb}(G) $ and further determine several classes of $ Rd $-balanced graphs.https://www.aimspress.com/article/doi/10.3934/math.20241707roman balanced dominating functionroman balanced domination number$ rd $-balanced graph |
spellingShingle | Mingyu Zhang Junxia Zhang On Roman balanced domination of graphs AIMS Mathematics roman balanced dominating function roman balanced domination number $ rd $-balanced graph |
title | On Roman balanced domination of graphs |
title_full | On Roman balanced domination of graphs |
title_fullStr | On Roman balanced domination of graphs |
title_full_unstemmed | On Roman balanced domination of graphs |
title_short | On Roman balanced domination of graphs |
title_sort | on roman balanced domination of graphs |
topic | roman balanced dominating function roman balanced domination number $ rd $-balanced graph |
url | https://www.aimspress.com/article/doi/10.3934/math.20241707 |
work_keys_str_mv | AT mingyuzhang onromanbalanceddominationofgraphs AT junxiazhang onromanbalanceddominationofgraphs |