On Roman balanced domination of graphs

Let $ G $ be a graph with vertex set $ V $. A function $ f $ : $ V\to \{-1, 0, 2\} $ is called a Roman balanced dominating function (RBDF) of $ G $ if $ \sum_{u\in N_G[v]}f(u) = 0 $ for each vertex $ v\in V $. The maximum (resp. minimum) Roman balanced domination number $ \gamma^{M}_{Rb}(G) $ (resp....

Full description

Saved in:
Bibliographic Details
Main Authors: Mingyu Zhang, Junxia Zhang
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241707
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590762104061952
author Mingyu Zhang
Junxia Zhang
author_facet Mingyu Zhang
Junxia Zhang
author_sort Mingyu Zhang
collection DOAJ
description Let $ G $ be a graph with vertex set $ V $. A function $ f $ : $ V\to \{-1, 0, 2\} $ is called a Roman balanced dominating function (RBDF) of $ G $ if $ \sum_{u\in N_G[v]}f(u) = 0 $ for each vertex $ v\in V $. The maximum (resp. minimum) Roman balanced domination number $ \gamma^{M}_{Rb}(G) $ (resp. $ \gamma^{m}_{Rb}(G) $) is the maximum (resp. minimum) value of $ \sum_{v\in V} f(v) $ among all Roman balanced dominating functions $ f $. A graph $ G $ is called $ Rd $-balanced if $ \gamma^{M}_{Rb}(G) = \gamma^{m}_{Rb}(G) = 0 $. In this paper, we obtain several upper and lower bounds on $ \gamma^{M}_{Rb}(G) $ and $ \gamma^{m}_{Rb}(G) $ and further determine several classes of $ Rd $-balanced graphs.
format Article
id doaj-art-9ac54719065940a99f88110e4fa77f08
institution Kabale University
issn 2473-6988
language English
publishDate 2024-12-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-9ac54719065940a99f88110e4fa77f082025-01-23T07:53:25ZengAIMS PressAIMS Mathematics2473-69882024-12-01912360013601110.3934/math.20241707On Roman balanced domination of graphsMingyu Zhang0Junxia Zhang1School of Mathematics and Statistics, Shanxi Datong University, Datong, Shanxi 037009, ChinaSchool of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaLet $ G $ be a graph with vertex set $ V $. A function $ f $ : $ V\to \{-1, 0, 2\} $ is called a Roman balanced dominating function (RBDF) of $ G $ if $ \sum_{u\in N_G[v]}f(u) = 0 $ for each vertex $ v\in V $. The maximum (resp. minimum) Roman balanced domination number $ \gamma^{M}_{Rb}(G) $ (resp. $ \gamma^{m}_{Rb}(G) $) is the maximum (resp. minimum) value of $ \sum_{v\in V} f(v) $ among all Roman balanced dominating functions $ f $. A graph $ G $ is called $ Rd $-balanced if $ \gamma^{M}_{Rb}(G) = \gamma^{m}_{Rb}(G) = 0 $. In this paper, we obtain several upper and lower bounds on $ \gamma^{M}_{Rb}(G) $ and $ \gamma^{m}_{Rb}(G) $ and further determine several classes of $ Rd $-balanced graphs.https://www.aimspress.com/article/doi/10.3934/math.20241707roman balanced dominating functionroman balanced domination number$ rd $-balanced graph
spellingShingle Mingyu Zhang
Junxia Zhang
On Roman balanced domination of graphs
AIMS Mathematics
roman balanced dominating function
roman balanced domination number
$ rd $-balanced graph
title On Roman balanced domination of graphs
title_full On Roman balanced domination of graphs
title_fullStr On Roman balanced domination of graphs
title_full_unstemmed On Roman balanced domination of graphs
title_short On Roman balanced domination of graphs
title_sort on roman balanced domination of graphs
topic roman balanced dominating function
roman balanced domination number
$ rd $-balanced graph
url https://www.aimspress.com/article/doi/10.3934/math.20241707
work_keys_str_mv AT mingyuzhang onromanbalanceddominationofgraphs
AT junxiazhang onromanbalanceddominationofgraphs