Numerical Investigation of the Time-Fractional Whitham–Broer–Kaup Equation Involving without Singular Kernel Operators
This paper aims to implement an analytical method, known as the Laplace homotopy perturbation transform technique, for the result of fractional-order Whitham–Broer–Kaup equations. The technique is a mixture of the Laplace transformation and homotopy perturbation technique. Fractional derivatives wit...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2021/7979365 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper aims to implement an analytical method, known as the Laplace homotopy perturbation transform technique, for the result of fractional-order Whitham–Broer–Kaup equations. The technique is a mixture of the Laplace transformation and homotopy perturbation technique. Fractional derivatives with Mittag-Leffler and exponential laws in sense of Caputo are considered. Moreover, this paper aims to show the Whitham–Broer–Kaup equations with both derivatives to see their difference in a real-world problem. The efficiency of both operators is confirmed by the outcome of the actual results of the Whitham–Broer–Kaup equations. Some problems have been presented to compare the solutions achieved with both fractional-order derivatives. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |