dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitors

Therapeutic strategies for Alzheimer’s disease (AD) often involve inhibiting acetylcholinesterase (AChE), underscoring the need for novel inhibitors with high selectivity and minimal side effects. A detailed analysis of the protein-ligand pharmacophore dynamics can facilitate this. In this study, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasser Hayek-Orduz, Dorian Armando Acevedo-Castro, Juan Sebastián Saldarriaga Escobar, Brandon Eli Ortiz-Domínguez, María Francisca Villegas-Torres, Paola A. Caicedo, Álvaro Barrera-Ocampo, Natalie Cortes, Edison H. Osorio, Andrés Fernando González Barrios
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-02-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fchem.2025.1479763/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832542322177343488
author Yasser Hayek-Orduz
Dorian Armando Acevedo-Castro
Dorian Armando Acevedo-Castro
Juan Sebastián Saldarriaga Escobar
Brandon Eli Ortiz-Domínguez
María Francisca Villegas-Torres
Paola A. Caicedo
Álvaro Barrera-Ocampo
Natalie Cortes
Edison H. Osorio
Andrés Fernando González Barrios
author_facet Yasser Hayek-Orduz
Dorian Armando Acevedo-Castro
Dorian Armando Acevedo-Castro
Juan Sebastián Saldarriaga Escobar
Brandon Eli Ortiz-Domínguez
María Francisca Villegas-Torres
Paola A. Caicedo
Álvaro Barrera-Ocampo
Natalie Cortes
Edison H. Osorio
Andrés Fernando González Barrios
author_sort Yasser Hayek-Orduz
collection DOAJ
description Therapeutic strategies for Alzheimer’s disease (AD) often involve inhibiting acetylcholinesterase (AChE), underscoring the need for novel inhibitors with high selectivity and minimal side effects. A detailed analysis of the protein-ligand pharmacophore dynamics can facilitate this. In this study, we developed and employed dyphAI, an innovative approach integrating machine learning models, ligand-based pharmacophore models, and complex-based pharmacophore models into a pharmacophore model ensemble. This ensemble captures key protein-ligand interactions, including π-cation interactions with Trp-86 and several π-π interactions with residues Tyr-341, Tyr-337, Tyr-124, and Tyr-72. The protocol identified 18 novel molecules from the ZINC database with binding energy values ranging from −62 to −115 kJ/mol, suggesting their strong potential as AChE inhibitors. To further validate the predictions, nine molecules were acquired and tested for their inhibitory activity against human AChE. Experimental results revealed that molecules, 4 (P-1894047), with its complex multi-ring structure and numerous hydrogen bond acceptors, and 7 (P-2652815), characterized by a flexible, polar framework with ten hydrogen bond donors and acceptors, exhibited IC₅₀ values lower than or equal to that of the control (galantamine), indicating potent inhibitory activity. Similarly, molecules 5 (P-1205609), 6 (P-1206762), 8 (P-2026435), and 9 (P-533735) also demonstrated strong inhibition. In contrast, molecule 3 (P-617769798) showed a higher IC50 value, and molecules 1 (P-14421887) and 2 (P-25746649) yielded inconsistent results, likely due to solubility issues in the experimental setup. These findings underscore the value of integrating computational predictions with experimental validation, enhancing the reliability of virtual screening in the discovery of potent enzyme inhibitors.
format Article
id doaj-art-9a8f3e3c68064a95a78bf769d3abf0aa
institution Kabale University
issn 2296-2646
language English
publishDate 2025-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Chemistry
spelling doaj-art-9a8f3e3c68064a95a78bf769d3abf0aa2025-02-04T06:31:50ZengFrontiers Media S.A.Frontiers in Chemistry2296-26462025-02-011310.3389/fchem.2025.14797631479763dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitorsYasser Hayek-Orduz0Dorian Armando Acevedo-Castro1Dorian Armando Acevedo-Castro2Juan Sebastián Saldarriaga Escobar3Brandon Eli Ortiz-Domínguez4María Francisca Villegas-Torres5Paola A. Caicedo6Álvaro Barrera-Ocampo7Natalie Cortes8Edison H. Osorio9Andrés Fernando González Barrios10Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, ColombiaGrupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, ColombiaComputational Bio-Organic Chemistry (COBO), Department of Chemistry, Universidad de los Andes, Bogotá, ColombiaGrupo Natura, Facultad de Ingenieria, Diseño y Ciencias Aplicadas, Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Universidad ICESI, Cali, ColombiaGrupo Natura, Facultad de Ingenieria, Diseño y Ciencias Aplicadas, Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Universidad ICESI, Cali, ColombiaCentro de Investigaciones Microbiológicas (CIMIC), Department of Biological Sciences, Universidad de los Andes, Bogotá, ColombiaGrupo Natura, Facultad de Ingenieria, Diseño y Ciencias Aplicadas, Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Universidad ICESI, Cali, ColombiaGrupo Natura, Facultad de Ingenieria, Diseño y Ciencias Aplicadas, Departamento de Ciencias Farmacéuticas y Químicas, Universidad ICESI, Cali, ColombiaGrupo de Investigación en Química Bioorgánica y Sistemas Moleculares (QBOSMO), Faculty of Natural Sciences and Mathematics, Universidad de Ibagué, Ibagué, ColombiaGrupo de Investigación en Química Bioorgánica y Sistemas Moleculares (QBOSMO), Faculty of Natural Sciences and Mathematics, Universidad de Ibagué, Ibagué, ColombiaGrupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, ColombiaTherapeutic strategies for Alzheimer’s disease (AD) often involve inhibiting acetylcholinesterase (AChE), underscoring the need for novel inhibitors with high selectivity and minimal side effects. A detailed analysis of the protein-ligand pharmacophore dynamics can facilitate this. In this study, we developed and employed dyphAI, an innovative approach integrating machine learning models, ligand-based pharmacophore models, and complex-based pharmacophore models into a pharmacophore model ensemble. This ensemble captures key protein-ligand interactions, including π-cation interactions with Trp-86 and several π-π interactions with residues Tyr-341, Tyr-337, Tyr-124, and Tyr-72. The protocol identified 18 novel molecules from the ZINC database with binding energy values ranging from −62 to −115 kJ/mol, suggesting their strong potential as AChE inhibitors. To further validate the predictions, nine molecules were acquired and tested for their inhibitory activity against human AChE. Experimental results revealed that molecules, 4 (P-1894047), with its complex multi-ring structure and numerous hydrogen bond acceptors, and 7 (P-2652815), characterized by a flexible, polar framework with ten hydrogen bond donors and acceptors, exhibited IC₅₀ values lower than or equal to that of the control (galantamine), indicating potent inhibitory activity. Similarly, molecules 5 (P-1205609), 6 (P-1206762), 8 (P-2026435), and 9 (P-533735) also demonstrated strong inhibition. In contrast, molecule 3 (P-617769798) showed a higher IC50 value, and molecules 1 (P-14421887) and 2 (P-25746649) yielded inconsistent results, likely due to solubility issues in the experimental setup. These findings underscore the value of integrating computational predictions with experimental validation, enhancing the reliability of virtual screening in the discovery of potent enzyme inhibitors.https://www.frontiersin.org/articles/10.3389/fchem.2025.1479763/fulldockingMD simulationspharmacophoreacetylcholinesterasemachine learning
spellingShingle Yasser Hayek-Orduz
Dorian Armando Acevedo-Castro
Dorian Armando Acevedo-Castro
Juan Sebastián Saldarriaga Escobar
Brandon Eli Ortiz-Domínguez
María Francisca Villegas-Torres
Paola A. Caicedo
Álvaro Barrera-Ocampo
Natalie Cortes
Edison H. Osorio
Andrés Fernando González Barrios
dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitors
Frontiers in Chemistry
docking
MD simulations
pharmacophore
acetylcholinesterase
machine learning
title dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitors
title_full dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitors
title_fullStr dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitors
title_full_unstemmed dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitors
title_short dyphAI dynamic pharmacophore modeling with AI: a tool for efficient screening of new acetylcholinesterase inhibitors
title_sort dyphai dynamic pharmacophore modeling with ai a tool for efficient screening of new acetylcholinesterase inhibitors
topic docking
MD simulations
pharmacophore
acetylcholinesterase
machine learning
url https://www.frontiersin.org/articles/10.3389/fchem.2025.1479763/full
work_keys_str_mv AT yasserhayekorduz dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT dorianarmandoacevedocastro dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT dorianarmandoacevedocastro dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT juansebastiansaldarriagaescobar dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT brandoneliortizdominguez dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT mariafranciscavillegastorres dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT paolaacaicedo dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT alvarobarreraocampo dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT nataliecortes dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT edisonhosorio dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors
AT andresfernandogonzalezbarrios dyphaidynamicpharmacophoremodelingwithaiatoolforefficientscreeningofnewacetylcholinesteraseinhibitors