The C/EBPβ antagonist peptide lucicebtide (ST101) induces macrophage polarization toward a pro-inflammatory phenotype and enhances anti-tumor immune responses

Immune-checkpoint inhibitors (ICIs) have shown unprecedented success in a subset of immunogenic tumors, however a host of patients with advanced solid tumors fail to respond well or at all to immunotherapy. Refractory tumors commonly display a tumor microenvironment (TME) rich in immunosuppressive m...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudio Scuoppo, Rick Ramirez, Siok F. Leong, Mark Koester, Zachary F. Mattes, Karen Mendelson, Julia Diehl, Franco Abbate, Erin Gallagher, Lila Ghamsari, Abi Vainstein-Haras, Gene Merutka, Barry J. Kappel, Jim A. Rotolo
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-03-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2025.1522699/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immune-checkpoint inhibitors (ICIs) have shown unprecedented success in a subset of immunogenic tumors, however a host of patients with advanced solid tumors fail to respond well or at all to immunotherapy. Refractory tumors commonly display a tumor microenvironment (TME) rich in immunosuppressive macrophages (M2-like) that suppress adaptive immunity and promote tumor progression. The ability to reprogram macrophages in the TME into an immune-active state holds great promise for enhancing responses to ICIs. Lucicebtide (previously referred to as ST101) is a peptide antagonist of the transcription factor C/EBPβ, a key activator of the transcriptional program in immunosuppressive macrophages. Here we show that lucicebtide exposure reprograms human immunosuppressive M2-like macrophages to a pro-inflammatory M1-like phenotype, restores cytotoxic T cell activation in immunosuppressed co-culture assays in vitro, and further increases T-cell activity in M1-like/T cell co-cultures. In immunocompetent, macrophage-rich triple-negative breast and colorectal cancer models, lucicebtide induces repolarization of tumor-associated macrophages (TAMs) to a pro-inflammatory M1-like phenotype and suppresses tumor growth. Lucicebtide synergizes with anti-PD-1 therapy and overcomes resistance to checkpoint inhibition in anti-PD-1-refractory tumors, but in vivo responses are impaired by systemic macrophage depletion, indicating that macrophage reprogramming is integral to lucicebtide activity. These results identify lucicebtide as a novel immunomodulator that reprograms immunosuppressive macrophage populations to enhance anti-tumor activity and suggests its utility for combination strategies in cancers with poor response to ICIs.
ISSN:1664-3224