Nilpotent Symmetries of a Model of 2D Diffeomorphism Invariant Theory: BRST Approach

Within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss the full set of proper BRST and anti-BRST transformations for a 2D diffeomorphism invariant theory which is described by the Lagrangian density of a standard bosonic string. The above (anti-)BRST transformations are o...

Full description

Saved in:
Bibliographic Details
Main Author: R. P. Malik
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2022/8155214
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss the full set of proper BRST and anti-BRST transformations for a 2D diffeomorphism invariant theory which is described by the Lagrangian density of a standard bosonic string. The above (anti-)BRST transformations are off-shell nilpotent and absolutely anticommuting. The latter property is valid on a submanifold of the space of quantum fields where the 2D version of the universal (anti-)BRST invariant Curci-Ferrari (CF) type of restrictions is satisfied. We derive the precise forms of the BRST and anti-BRST invariant Lagrangian densities as well as the exact expressions for the conserved (anti-)BRST and ghost charges. The lucid derivation of the proper anti-BRST symmetry transformations and the emergence of the CF-type restrictions are completely novel results for our present bosonic string which has already been discussed earlier in literature where only the BRST symmetry transformations have been pointed out. We briefly mention the derivation of the CF-type restrictions from the modified version of the Bonora-Tonin superfield approach, too.
ISSN:1687-7365