Robust Adaptive Tracking Control of a Class of Robot Manipulators with Model Uncertainties

A robust tracking controller for robot manipulators measuring only the angular positions and considering model uncertainties is presented. It is considered that the model is uncertain; that is, the system parameters, nonlinear terms, external perturbations, and the friction effects in each robot joi...

Full description

Saved in:
Bibliographic Details
Main Authors: G. Solís-Perales, R. Peón-Escalante
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2012/271705
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A robust tracking controller for robot manipulators measuring only the angular positions and considering model uncertainties is presented. It is considered that the model is uncertain; that is, the system parameters, nonlinear terms, external perturbations, and the friction effects in each robot joint are considered unknown. The controller is composed by two parts, a linearizing-like control feedback and a high-gain estimator. The main idea is to lump the uncertain terms into a new state which represents the dynamics of the uncertainties. This new state is then estimated in order to be compensated. In this way the resulting controller is robust. A numerical example for a RR robot manipulator is provided, in order to corroborate the results.
ISSN:1687-5591
1687-5605