An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary
<p>We study the existence of solutions an <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary for <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math> depending on the...
Saved in:
Format: | Article |
---|---|
Language: | English |
Published: |
Wiley
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/93163 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832556079306768384 |
---|---|
collection | DOAJ |
description | <p>We study the existence of solutions an <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary for <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math> depending on the radius <mml:math alttext="$f$"> <mml:mi>f</mml:mi> </mml:math>. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation <mml:math alttext="$N(a)={L}/{sqrt{2}}$"> <mml:mi>N</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> </mml:mrow></mml:mrow> </mml:math>, where <mml:math alttext="$N:mathcal{A}subset mathbb{R}^+ ightarrow mathbb{R}$"> <mml:mi>N</mml:mi><mml:mo>:</mml:mo><mml:mi>𝒜</mml:mi><mml:mo>⊂</mml:mo><mml:msup> <mml:mi>ℝ</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>→</mml:mo><mml:mi>ℝ</mml:mi> </mml:math> is a function depending on <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>.</p> |
format | Article |
id | doaj-art-9a1a7bbc58864c52b294e11c9a2bff6d |
institution | Kabale University |
issn | 1085-3375 |
language | English |
publishDate | 2006-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-9a1a7bbc58864c52b294e11c9a2bff6d2025-02-03T05:46:32ZengWileyAbstract and Applied Analysis1085-33752006-01-012006An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary<p>We study the existence of solutions an <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary for <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math> depending on the radius <mml:math alttext="$f$"> <mml:mi>f</mml:mi> </mml:math>. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation <mml:math alttext="$N(a)={L}/{sqrt{2}}$"> <mml:mi>N</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> </mml:mrow></mml:mrow> </mml:math>, where <mml:math alttext="$N:mathcal{A}subset mathbb{R}^+ ightarrow mathbb{R}$"> <mml:mi>N</mml:mi><mml:mo>:</mml:mo><mml:mi>𝒜</mml:mi><mml:mo>⊂</mml:mo><mml:msup> <mml:mi>ℝ</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>→</mml:mo><mml:mi>ℝ</mml:mi> </mml:math> is a function depending on <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/93163 |
spellingShingle | An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary Abstract and Applied Analysis |
title | An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_full | An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_fullStr | An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_full_unstemmed | An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_short | An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_sort | mml math alttext h mml mi h mml mi mml math system for a revolution surface without boundary |
url | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/93163 |