Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013
The aim of this study is to identify the spatial distribution of Vertically Integrated Moisture Flux Convergence (Vertically Integrated) Moisture Flux Convergence) on Iran’s atmosphere. To achieve this aim, the monthly ECMWF gridded data used during the period from 1/1979-12/2013. First, based on th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Kharazmi University
2021-09-01
|
Series: | تحقیقات کاربردی علوم جغرافیایی |
Subjects: | |
Online Access: | http://jgs.khu.ac.ir/article-1-3084-en.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832575736468209664 |
---|---|
author | Farshad Pazhoh mehry akbary Mohammad Darand |
author_facet | Farshad Pazhoh mehry akbary Mohammad Darand |
author_sort | Farshad Pazhoh |
collection | DOAJ |
description | The aim of this study is to identify the spatial distribution of Vertically Integrated Moisture Flux Convergence (Vertically Integrated) Moisture Flux Convergence) on Iran’s atmosphere. To achieve this aim, the monthly ECMWF gridded data used during the period from 1/1979-12/2013. First, based on the specific humidity content in the atmosphere, troposphere divided into three layers (850-1000hPa), mid (700-775hPa) and upper (500-600hPa). In order to achieve VIMFC spatial variations on Iran, spatial self-correlation methods of globular moron and hot spots used at 90, 95, 99 and 99/99 percent significance levels. The results of this study showed that the spatial distribution of VIMFC in Iran during the first layer of troposphere and especially during warm months of year has a high cluster pattern and in cold months of the year and in the third layer of troposphere cluster pattern decrease. Based on the hot spots index in the first layer of troposphere low height regions, in the second layer of troposphere the high regions of the Alborz, zagros and central mountains and in the third layer of troposphere alpine regions of central and eastern Iran's mountains has positive spatial self-correlation (hot spots). The results show that in winter and autumn during the second period (1999-2013), the range of hot spots of the VIMFC show a significant reduction compared to the first period (1979-1998) on Iran. |
format | Article |
id | doaj-art-9a183c3d8f1f44648a1f16ac546cdf1e |
institution | Kabale University |
issn | 2228-7736 2588-5138 |
language | fas |
publishDate | 2021-09-01 |
publisher | Kharazmi University |
record_format | Article |
series | تحقیقات کاربردی علوم جغرافیایی |
spelling | doaj-art-9a183c3d8f1f44648a1f16ac546cdf1e2025-01-31T17:28:21ZfasKharazmi Universityتحقیقات کاربردی علوم جغرافیایی2228-77362588-51382021-09-0121621949Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013Farshad Pazhoh01mehry akbary2Mohammad Darand3 Ph.D. student of Agricultural Climatology, Kharazmi University, Tehran, Iran . Associate Professor of climatology, kharazmi University, Tehran, Iran . Associate Professor of climatology, kharazmi University, Tehran, Iran . Associate Professor of climatology, university of Kurdistan The aim of this study is to identify the spatial distribution of Vertically Integrated Moisture Flux Convergence (Vertically Integrated) Moisture Flux Convergence) on Iran’s atmosphere. To achieve this aim, the monthly ECMWF gridded data used during the period from 1/1979-12/2013. First, based on the specific humidity content in the atmosphere, troposphere divided into three layers (850-1000hPa), mid (700-775hPa) and upper (500-600hPa). In order to achieve VIMFC spatial variations on Iran, spatial self-correlation methods of globular moron and hot spots used at 90, 95, 99 and 99/99 percent significance levels. The results of this study showed that the spatial distribution of VIMFC in Iran during the first layer of troposphere and especially during warm months of year has a high cluster pattern and in cold months of the year and in the third layer of troposphere cluster pattern decrease. Based on the hot spots index in the first layer of troposphere low height regions, in the second layer of troposphere the high regions of the Alborz, zagros and central mountains and in the third layer of troposphere alpine regions of central and eastern Iran's mountains has positive spatial self-correlation (hot spots). The results show that in winter and autumn during the second period (1999-2013), the range of hot spots of the VIMFC show a significant reduction compared to the first period (1979-1998) on Iran.http://jgs.khu.ac.ir/article-1-3084-en.pdfvimfctropospherehot spot indexspatial self-correlationiran |
spellingShingle | Farshad Pazhoh mehry akbary Mohammad Darand Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013 تحقیقات کاربردی علوم جغرافیایی vimfc troposphere hot spot index spatial self-correlation iran |
title | Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013 |
title_full | Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013 |
title_fullStr | Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013 |
title_full_unstemmed | Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013 |
title_short | Recognition of spatial distribution of convergence fluctuation of VIMFC vertical cumulative moisture on Iran’s atmosphere during 1979-2013 |
title_sort | recognition of spatial distribution of convergence fluctuation of vimfc vertical cumulative moisture on iran s atmosphere during 1979 2013 |
topic | vimfc troposphere hot spot index spatial self-correlation iran |
url | http://jgs.khu.ac.ir/article-1-3084-en.pdf |
work_keys_str_mv | AT farshadpazhoh recognitionofspatialdistributionofconvergencefluctuationofvimfcverticalcumulativemoistureoniransatmosphereduring19792013 AT mehryakbary recognitionofspatialdistributionofconvergencefluctuationofvimfcverticalcumulativemoistureoniransatmosphereduring19792013 AT mohammaddarand recognitionofspatialdistributionofconvergencefluctuationofvimfcverticalcumulativemoistureoniransatmosphereduring19792013 |