A Class of Steffensen-Type Iterative Methods for Nonlinear Systems
A class of iterative methods without restriction on the computation of Fréchet derivatives including multisteps for solving systems of nonlinear equations is presented. By considering a frozen Jacobian, we provide a class of m-step methods with order of convergence m+1. A new method named as Steffen...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/705375 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A class of iterative methods without restriction on the computation of Fréchet derivatives including multisteps for solving systems of nonlinear equations is presented. By considering a frozen Jacobian, we provide a class of m-step methods with order of convergence m+1. A new method named as Steffensen-Schulz scheme is also contributed. Numerical tests and comparisons with the existing methods are included. |
---|---|
ISSN: | 1110-757X 1687-0042 |