Low Complexity Cyclic Feature Recovery Based on Compressed Sampling

To extract statistic features of communication signal from compressive samples, such as cyclostationary property, full-scale signal reconstruction is not actually necessary or somehow expensive. However, direct reconstruction of cyclic feature may not be practical due to the relative high processing...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhuo Sun, Jia Hou, Siyuan Liu, Sese Wang, Xuantong Chen
Format: Article
Language:English
Published: Wiley 2015-10-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2015/946457
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To extract statistic features of communication signal from compressive samples, such as cyclostationary property, full-scale signal reconstruction is not actually necessary or somehow expensive. However, direct reconstruction of cyclic feature may not be practical due to the relative high processing complexity. In this paper, we propose a new cyclic feature recovery approach based on the reconstruction of autocorrelation sequence from sub-Nyquist samples, which can reduce the computation complexity and memory consumption significantly, while the recovery performance remains well in the same compressive ratio. Through theoretical analyses and simulations, we conducted to show and verify our statements and conclusions.
ISSN:1550-1477