Soil Bulk Density, Aggregates, Carbon Stabilization, Nutrients and Vegetation Traits as Affected by Manure Gradients Regimes Under Alpine Meadows of Qinghai–Tibetan Plateau Ecosystem

Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how man...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahran Sadiq, Nasir Rahim, Majid Mahmood Tahir, Aqila Shaheen, Fu Ran, Guoxiang Chen, Xiaoming Bai
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/14/10/1442
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence SOC stability, grassland soil, forage structure and nutritional quality. However, the responses of SOC fractions, soil and forage structure and quality to the influence of manure gradient practices remain unclear, particularly at Tianzhu belt, and require further investigation. A field study was undertaken to evaluate the soil bulk density, aggregate fractions and dynamics in SOC concentration, permanganate oxidizable SOC fractions, SOC stabilization and soil nutrients at the soil aggregate level under manure gradient practices. Moreover, the forage biodiversity, aboveground biomass and nutritional quality of alpine meadow plant communities were also explored. Four treatments, i.e., control (CK), sole sheep manure (SM), cow dung alone (CD) and a mixture of sheep manure and cow dung (SMCD) under five input rates, i.e., 0.54, 1.08, 1.62, 2.16 and 2.70 kg m<sup>−2</sup>, were employed under randomized complete block design with four replications. Our analysis confirmed the maximum soil bulk density (BD) (0.80 ± 0.05 g cm<sup>−3</sup>) and micro-aggregate fraction (45.27 ± 0.77%) under CK, whilst the maximum macro-aggregate fraction (40.12 ± 0.54%) was documented under 2.70 kg m<sup>−2</sup> of SMCD. The SOC, very-labile C fraction (C<i>frac</i><sub>1</sub>), labile C fraction (C<i>frac</i><sub>2</sub>) and non-labile/recalcitrant C fraction (C<i>frac</i><sub>4</sub>) increased with manure input levels, being the highest in 2.16 kg m<sup>−2</sup> and 2.70 kg m<sup>−2</sup> applications of sole SM and the integration of 50% SM and 50% CD (SMCD), whereas the less-labile fraction (C<i>frac</i><sub>3</sub>) was highest under CK across aggregate fractions. However, manures under varying gradients improved SOC pools and stabilization for both macro- and micro-aggregates. A negative response of the carbon management index (CMI) in macro-aggregates was observed, whilst CMI in the micro-aggregate fraction depicted a positive response to manure addition with input rates, being the maximum under sole SM addition averaged across gradients. Higher SOC pools and CMI under the SM, CD and SMCD might be owing to the higher level of soil organic matter inputs under higher doses of manures. Moreover, the highest accumulation of soil nutrients,, for instance, TN, AN, TP, AP, TK, AK, DTPA extractable Zn, Cu, Fe and Mn, was recorded in SM, CD and SMCD under varying gradients over CK at both aggregate fractions. More nutrient accumulation was found in macro-aggregates over micro-aggregates, which might be credited to the physical protection of macro-aggregates. Overall, manure addition under varying input rates improved the plant community structure and enhanced meadow yield, plant community diversity and nutritional quality more than CK. Therefore, alpine meadows should be managed sustainably via the adoption of sole SM practice under a 2.16 kg m<sup>−2</sup> input rate for the ecological utilization of the meadow ecosystem. The results of this study deliver an innovative perspective in understanding the response of alpine meadows’ SOC pools, SOC stabilization and nutrients at the aggregate level, as well as vegetation structure, productivity and forage nutritional quality to manure input rate practices. Moreover, this research offers valuable information for ensuring climate change mitigation and the clean production of alpine meadows in the Qinghai–Tibetan Plateau area of China.
ISSN:2223-7747