Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type

We consider the discrete Volterra type equation of the form Δ(rnΔxn)=bn+∑k=1nK(n,k)f(xk). We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We use o(ns), for given nonpositive real s, as a mea...

Full description

Saved in:
Bibliographic Details
Main Authors: Janusz Migda, Małgorzata Migda, Magdalena Nockowska-Rosiak
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2018/2368694
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559364634836992
author Janusz Migda
Małgorzata Migda
Magdalena Nockowska-Rosiak
author_facet Janusz Migda
Małgorzata Migda
Magdalena Nockowska-Rosiak
author_sort Janusz Migda
collection DOAJ
description We consider the discrete Volterra type equation of the form Δ(rnΔxn)=bn+∑k=1nK(n,k)f(xk). We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We use o(ns), for given nonpositive real s, as a measure of approximation.
format Article
id doaj-art-99c04747b3884cd091b8714a1c160598
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-99c04747b3884cd091b8714a1c1605982025-02-03T01:30:14ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2018-01-01201810.1155/2018/23686942368694Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra TypeJanusz Migda0Małgorzata Migda1Magdalena Nockowska-Rosiak2Faculty of Mathematics and Computer Science, A. Mickiewicz University, Umultowska 87, 61-614 Poznań, PolandInstitute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, PolandInstitute of Mathematics, Lodz University of Technology, Ul. Wólczańska 215, 90-924 Łódź, PolandWe consider the discrete Volterra type equation of the form Δ(rnΔxn)=bn+∑k=1nK(n,k)f(xk). We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We use o(ns), for given nonpositive real s, as a measure of approximation.http://dx.doi.org/10.1155/2018/2368694
spellingShingle Janusz Migda
Małgorzata Migda
Magdalena Nockowska-Rosiak
Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type
Discrete Dynamics in Nature and Society
title Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type
title_full Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type
title_fullStr Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type
title_full_unstemmed Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type
title_short Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type
title_sort asymptotic properties of solutions to second order difference equations of volterra type
url http://dx.doi.org/10.1155/2018/2368694
work_keys_str_mv AT januszmigda asymptoticpropertiesofsolutionstosecondorderdifferenceequationsofvolterratype
AT małgorzatamigda asymptoticpropertiesofsolutionstosecondorderdifferenceequationsofvolterratype
AT magdalenanockowskarosiak asymptoticpropertiesofsolutionstosecondorderdifferenceequationsofvolterratype