Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator

This paper presents a new SIRS model for recurrent childhood diseases under the Caputo fractional difference operator. The existence theory is established using Brouwer’s fixed-point theorem and the Banach contraction principle, providing a comprehensive mathematical foundation for the model. Ulam s...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasir A. Madani, Zeeshan Ali, Mohammed Rabih, Amer Alsulami, Nidal H. E. Eljaneid, Khaled Aldwoah, Blgys Muflh
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/1/55
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588430228324352
author Yasir A. Madani
Zeeshan Ali
Mohammed Rabih
Amer Alsulami
Nidal H. E. Eljaneid
Khaled Aldwoah
Blgys Muflh
author_facet Yasir A. Madani
Zeeshan Ali
Mohammed Rabih
Amer Alsulami
Nidal H. E. Eljaneid
Khaled Aldwoah
Blgys Muflh
author_sort Yasir A. Madani
collection DOAJ
description This paper presents a new SIRS model for recurrent childhood diseases under the Caputo fractional difference operator. The existence theory is established using Brouwer’s fixed-point theorem and the Banach contraction principle, providing a comprehensive mathematical foundation for the model. Ulam stability is demonstrated using nonlinear functional analysis. Sensitivity analysis is conducted based on the variation of each parameter, and the basic reproduction number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula> is introduced to assess local stability at two equilibrium points. The stability analysis indicates that the disease-free equilibrium point is stable when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, while the endemic equilibrium point is stable when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and otherwise unstable. Numerical simulations demonstrate the model’s effectiveness in capturing realistic scenarios, particularly the recurrent patterns observed in some childhood diseases.
format Article
id doaj-art-99a794ee60534507be7d841662d4055c
institution Kabale University
issn 2504-3110
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-99a794ee60534507be7d841662d4055c2025-01-24T13:33:31ZengMDPI AGFractal and Fractional2504-31102025-01-01915510.3390/fractalfract9010055Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference OperatorYasir A. Madani0Zeeshan Ali1Mohammed Rabih2Amer Alsulami3Nidal H. E. Eljaneid4Khaled Aldwoah5Blgys Muflh6Department of Mathematics, College of Science, University of Ha’il, Ha’il 55473, Saudi ArabiaSchool of Science, Monash University, Selangor 47500, MalaysiaDepartment of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi ArabiaDepartment of Mathematics, Turabah University College, Taif University, Taif 21944, Saudi ArabiaDepartment of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Mathematics, Faculty of Science, Islamic University of Madinah, Medina 42351, Saudi ArabiaDepartment of Mathematics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi ArabiaThis paper presents a new SIRS model for recurrent childhood diseases under the Caputo fractional difference operator. The existence theory is established using Brouwer’s fixed-point theorem and the Banach contraction principle, providing a comprehensive mathematical foundation for the model. Ulam stability is demonstrated using nonlinear functional analysis. Sensitivity analysis is conducted based on the variation of each parameter, and the basic reproduction number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula> is introduced to assess local stability at two equilibrium points. The stability analysis indicates that the disease-free equilibrium point is stable when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, while the endemic equilibrium point is stable when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and otherwise unstable. Numerical simulations demonstrate the model’s effectiveness in capturing realistic scenarios, particularly the recurrent patterns observed in some childhood diseases.https://www.mdpi.com/2504-3110/9/1/55childhood disease modelingCaputo fractional difference operatorexistence theorystability analysissensitivity analysisnumerical simulations
spellingShingle Yasir A. Madani
Zeeshan Ali
Mohammed Rabih
Amer Alsulami
Nidal H. E. Eljaneid
Khaled Aldwoah
Blgys Muflh
Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator
Fractal and Fractional
childhood disease modeling
Caputo fractional difference operator
existence theory
stability analysis
sensitivity analysis
numerical simulations
title Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator
title_full Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator
title_fullStr Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator
title_full_unstemmed Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator
title_short Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator
title_sort discrete fractional order modeling of recurrent childhood diseases using the caputo difference operator
topic childhood disease modeling
Caputo fractional difference operator
existence theory
stability analysis
sensitivity analysis
numerical simulations
url https://www.mdpi.com/2504-3110/9/1/55
work_keys_str_mv AT yasiramadani discretefractionalordermodelingofrecurrentchildhooddiseasesusingthecaputodifferenceoperator
AT zeeshanali discretefractionalordermodelingofrecurrentchildhooddiseasesusingthecaputodifferenceoperator
AT mohammedrabih discretefractionalordermodelingofrecurrentchildhooddiseasesusingthecaputodifferenceoperator
AT ameralsulami discretefractionalordermodelingofrecurrentchildhooddiseasesusingthecaputodifferenceoperator
AT nidalheeljaneid discretefractionalordermodelingofrecurrentchildhooddiseasesusingthecaputodifferenceoperator
AT khaledaldwoah discretefractionalordermodelingofrecurrentchildhooddiseasesusingthecaputodifferenceoperator
AT blgysmuflh discretefractionalordermodelingofrecurrentchildhooddiseasesusingthecaputodifferenceoperator