Early Fault-Tolerant Quantum Algorithms in Practice: Application to Ground-State Energy Estimation

We investigate the feasibility of early fault-tolerant quantum algorithms focusing on ground-state energy estimation problems. In particular, we examine the computation of the cumulative distribution function (CDF) of the spectral measure of a Hamiltonian and the identification of its discontinuitie...

Full description

Saved in:
Bibliographic Details
Main Authors: Oriel Kiss, Utkarsh Azad, Borja Requena, Alessandro Roggero, David Wakeham, Juan Miguel Arrazola
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2025-04-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2025-04-01-1682/pdf/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the feasibility of early fault-tolerant quantum algorithms focusing on ground-state energy estimation problems. In particular, we examine the computation of the cumulative distribution function (CDF) of the spectral measure of a Hamiltonian and the identification of its discontinuities. Scaling these methods to larger system sizes reveals three key challenges: the smoothness of the CDF for large supports, the lack of tight lower bounds on the overlap with the true ground state, and the difficulty of preparing high-quality initial states. To address these challenges, we propose a signal processing approach to find these estimates automatically, in the regime where the quality of the initial state is unknown. Rather than aiming for exact ground-state energy, we advocate for improving classical estimates by targeting the low-energy support of the initial state. Additionally, we provide quantitative resource estimates, demonstrating a constant factor improvement in the number of samples required to detect a specified change in CDF. Our numerical experiments, conducted on a 26-qubit fully connected Heisenberg model, leverage a truncated density-matrix renormalization group (DMRG) initial state with a low bond dimension. The results show that the predictions from the quantum algorithm align closely with the DMRG-converged energies at larger bond dimensions while requiring several orders of magnitude fewer samples than theoretical estimates suggest. These findings underscore that CDF-based quantum algorithms are a practical and resource-efficient alternative to quantum phase estimation, particularly in resource-constrained scenarios.
ISSN:2521-327X